Gokulapriyan
commited on
Commit
·
1c098ae
1
Parent(s):
b77ca3c
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- imagefolder
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
model-index:
|
10 |
+
- name: swin-tiny-patch4-window7-224-finetuned-new_dataset_50e
|
11 |
+
results:
|
12 |
+
- task:
|
13 |
+
name: Image Classification
|
14 |
+
type: image-classification
|
15 |
+
dataset:
|
16 |
+
name: imagefolder
|
17 |
+
type: imagefolder
|
18 |
+
config: default
|
19 |
+
split: train
|
20 |
+
args: default
|
21 |
+
metrics:
|
22 |
+
- name: Accuracy
|
23 |
+
type: accuracy
|
24 |
+
value: 0.7837837837837838
|
25 |
+
---
|
26 |
+
|
27 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
28 |
+
should probably proofread and complete it, then remove this comment. -->
|
29 |
+
|
30 |
+
# swin-tiny-patch4-window7-224-finetuned-new_dataset_50e
|
31 |
+
|
32 |
+
This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
|
33 |
+
It achieves the following results on the evaluation set:
|
34 |
+
- Loss: 0.7626
|
35 |
+
- Accuracy: 0.7838
|
36 |
+
|
37 |
+
## Model description
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Intended uses & limitations
|
42 |
+
|
43 |
+
More information needed
|
44 |
+
|
45 |
+
## Training and evaluation data
|
46 |
+
|
47 |
+
More information needed
|
48 |
+
|
49 |
+
## Training procedure
|
50 |
+
|
51 |
+
### Training hyperparameters
|
52 |
+
|
53 |
+
The following hyperparameters were used during training:
|
54 |
+
- learning_rate: 5e-05
|
55 |
+
- train_batch_size: 32
|
56 |
+
- eval_batch_size: 32
|
57 |
+
- seed: 42
|
58 |
+
- gradient_accumulation_steps: 4
|
59 |
+
- total_train_batch_size: 128
|
60 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
61 |
+
- lr_scheduler_type: linear
|
62 |
+
- lr_scheduler_warmup_ratio: 0.1
|
63 |
+
- num_epochs: 50
|
64 |
+
|
65 |
+
### Training results
|
66 |
+
|
67 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
68 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
69 |
+
| No log | 0.94 | 4 | 0.5406 | 0.7568 |
|
70 |
+
| No log | 1.94 | 8 | 0.5781 | 0.7297 |
|
71 |
+
| 0.369 | 2.94 | 12 | 0.5188 | 0.7568 |
|
72 |
+
| 0.369 | 3.94 | 16 | 0.4889 | 0.7703 |
|
73 |
+
| 0.3889 | 4.94 | 20 | 0.4707 | 0.7703 |
|
74 |
+
| 0.3889 | 5.94 | 24 | 0.4914 | 0.7703 |
|
75 |
+
| 0.3889 | 6.94 | 28 | 0.6717 | 0.7432 |
|
76 |
+
| 0.3537 | 7.94 | 32 | 0.6126 | 0.7973 |
|
77 |
+
| 0.3537 | 8.94 | 36 | 0.5298 | 0.7568 |
|
78 |
+
| 0.3356 | 9.94 | 40 | 0.5882 | 0.7432 |
|
79 |
+
| 0.3356 | 10.94 | 44 | 0.5746 | 0.7432 |
|
80 |
+
| 0.3356 | 11.94 | 48 | 0.6622 | 0.7297 |
|
81 |
+
| 0.3231 | 12.94 | 52 | 0.5718 | 0.7703 |
|
82 |
+
| 0.3231 | 13.94 | 56 | 0.7128 | 0.7297 |
|
83 |
+
| 0.3732 | 14.94 | 60 | 0.5254 | 0.7838 |
|
84 |
+
| 0.3732 | 15.94 | 64 | 0.7287 | 0.7162 |
|
85 |
+
| 0.3732 | 16.94 | 68 | 0.5491 | 0.7568 |
|
86 |
+
| 0.3704 | 17.94 | 72 | 0.6270 | 0.8108 |
|
87 |
+
| 0.3704 | 18.94 | 76 | 0.5768 | 0.7973 |
|
88 |
+
| 0.3005 | 19.94 | 80 | 0.5718 | 0.7568 |
|
89 |
+
| 0.3005 | 20.94 | 84 | 0.6060 | 0.7838 |
|
90 |
+
| 0.3005 | 21.94 | 88 | 0.6006 | 0.7568 |
|
91 |
+
| 0.2739 | 22.94 | 92 | 0.5254 | 0.7703 |
|
92 |
+
| 0.2739 | 23.94 | 96 | 0.6768 | 0.7297 |
|
93 |
+
| 0.2627 | 24.94 | 100 | 0.6552 | 0.7838 |
|
94 |
+
| 0.2627 | 25.94 | 104 | 0.6359 | 0.7568 |
|
95 |
+
| 0.2627 | 26.94 | 108 | 0.6695 | 0.7568 |
|
96 |
+
| 0.2573 | 27.94 | 112 | 0.6321 | 0.7838 |
|
97 |
+
| 0.2573 | 28.94 | 116 | 0.6559 | 0.7973 |
|
98 |
+
| 0.2336 | 29.94 | 120 | 0.7345 | 0.7838 |
|
99 |
+
| 0.2336 | 30.94 | 124 | 0.6289 | 0.7703 |
|
100 |
+
| 0.2336 | 31.94 | 128 | 0.8608 | 0.6892 |
|
101 |
+
| 0.2126 | 32.94 | 132 | 0.8152 | 0.7838 |
|
102 |
+
| 0.2126 | 33.94 | 136 | 0.9124 | 0.7162 |
|
103 |
+
| 0.2 | 34.94 | 140 | 0.7841 | 0.7703 |
|
104 |
+
| 0.2 | 35.94 | 144 | 0.7741 | 0.7838 |
|
105 |
+
| 0.2 | 36.94 | 148 | 0.7580 | 0.7973 |
|
106 |
+
| 0.1858 | 37.94 | 152 | 0.7781 | 0.7973 |
|
107 |
+
| 0.1858 | 38.94 | 156 | 0.7539 | 0.7568 |
|
108 |
+
| 0.1806 | 39.94 | 160 | 0.7460 | 0.7703 |
|
109 |
+
| 0.1806 | 40.94 | 164 | 0.7814 | 0.7703 |
|
110 |
+
| 0.1806 | 41.94 | 168 | 0.7745 | 0.7973 |
|
111 |
+
| 0.1771 | 42.94 | 172 | 0.7551 | 0.7838 |
|
112 |
+
| 0.1771 | 43.94 | 176 | 0.7821 | 0.7838 |
|
113 |
+
| 0.1649 | 44.94 | 180 | 0.7822 | 0.7703 |
|
114 |
+
| 0.1649 | 45.94 | 184 | 0.7580 | 0.7838 |
|
115 |
+
| 0.1649 | 46.94 | 188 | 0.7376 | 0.7703 |
|
116 |
+
| 0.1711 | 47.94 | 192 | 0.7495 | 0.7703 |
|
117 |
+
| 0.1711 | 48.94 | 196 | 0.7561 | 0.7703 |
|
118 |
+
| 0.1579 | 49.94 | 200 | 0.7626 | 0.7838 |
|
119 |
+
|
120 |
+
|
121 |
+
### Framework versions
|
122 |
+
|
123 |
+
- Transformers 4.26.0
|
124 |
+
- Pytorch 1.13.1+cu116
|
125 |
+
- Datasets 2.9.0
|
126 |
+
- Tokenizers 0.13.2
|