|
--- |
|
license: mit |
|
base_model: BAAI/bge-base-en-v1.5 |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: SECTOR-multilabel-bge |
|
results: [] |
|
datasets: |
|
- GIZ/policy_classification |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# SECTOR-multilabel-bge |
|
|
|
This model is a fine-tuned version of [BAAI/bge-base-en-v1.5](https://huggingface.co./BAAI/bge-base-en-v1.5) on the [Policy-Classification](https://huggingface.co./datasets/GIZ/policy_classification) dataset. |
|
|
|
*The loss function BCEWithLogitsLoss is modified with pos_weight to focus on recall, therefore instead of loss the evaluation metrics are used to assess the model performance during training* |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.6114 |
|
- Precision-micro: 0.6428 |
|
- Precision-samples: 0.7488 |
|
- Precision-weighted: 0.6519 |
|
- Recall-micro: 0.7855 |
|
- Recall-samples: 0.8627 |
|
- Recall-weighted: 0.7855 |
|
- F1-micro: 0.7071 |
|
- F1-samples: 0.7638 |
|
- F1-weighted: 0.7109 |
|
|
|
## Model description |
|
|
|
The purpose of this model is to predict multiple labels simultaneously from a given input data. Specifically, the model will predict Sector labels - Agriculture,Buildings, |
|
Coastal Zone,Cross-Cutting Area,Disaster Risk Management (DRM),Economy-wide,Education,Energy,Environment,Health,Industries,LULUCF/Forestry,Social Development,Tourism, |
|
Transport,Urban,Waste,Water |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
- Training Dataset: 10123 |
|
| Class | Positive Count of Class| |
|
|:-------------|:--------| |
|
| Agriculture | 2235 | |
|
| Buildings | 169 | |
|
| Coastal Zone | 698| |
|
| Cross-Cutting Area | 1853 | |
|
| Disaster Risk Management (DRM) | 814 | |
|
| Economy-wide | 873 | |
|
| Education | 180| |
|
| Energy | 2847 | |
|
| Environment | 905 | |
|
| Health | 662| |
|
| Industries | 419 | |
|
| LULUCF/Forestry | 1861| |
|
| Social Development | 507 | |
|
| Tourism | 192 | |
|
| Transport | 1173| |
|
| Urban | 558 | |
|
| Waste | 714| |
|
| Water | 1207 | |
|
|
|
- Validation Dataset: 936 |
|
| Class | Positive Count of Class| |
|
|:-------------|:--------| |
|
| Agriculture | 200 | |
|
| Buildings | 18 | |
|
| Coastal Zone | 71| |
|
| Cross-Cutting Area | 180 | |
|
| Disaster Risk Management (DRM) | 85 | |
|
| Economy-wide | 85 | |
|
| Education | 23| |
|
| Energy | 254 | |
|
| Environment | 91 | |
|
| Health | 68| |
|
| Industries | 41 | |
|
| LULUCF/Forestry | 193| |
|
| Social Development | 56 | |
|
| Tourism | 28 | |
|
| Transport | 107| |
|
| Urban | 51 | |
|
| Waste | 59| |
|
| Water | 106 | |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 7.04e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_steps: 300 |
|
- num_epochs: 7 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision-micro | Precision-samples | Precision-weighted | Recall-micro | Recall-samples | Recall-weighted | F1-micro | F1-samples | F1-weighted | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------------:|:-----------------:|:------------------:|:------------:|:--------------:|:---------------:|:--------:|:----------:|:-----------:| |
|
| 0.7077 | 1.0 | 633 | 0.5490 | 0.4226 | 0.5465 | 0.4954 | 0.8211 | 0.8908 | 0.8211 | 0.5580 | 0.6243 | 0.5977 | |
|
| 0.4546 | 2.0 | 1266 | 0.5009 | 0.4899 | 0.6127 | 0.5202 | 0.8438 | 0.9023 | 0.8438 | 0.6199 | 0.6822 | 0.6366 | |
|
| 0.3105 | 3.0 | 1899 | 0.4947 | 0.5005 | 0.6593 | 0.5317 | 0.8508 | 0.8970 | 0.8508 | 0.6303 | 0.7125 | 0.6474 | |
|
| 0.2044 | 4.0 | 2532 | 0.5430 | 0.5757 | 0.7044 | 0.5970 | 0.8106 | 0.8801 | 0.8106 | 0.6733 | 0.7379 | 0.6834 | |
|
| 0.1314 | 5.0 | 3165 | 0.5633 | 0.6132 | 0.7385 | 0.6271 | 0.8065 | 0.8772 | 0.8065 | 0.6967 | 0.7606 | 0.7032 | |
|
| 0.0892 | 6.0 | 3798 | 0.6073 | 0.6425 | 0.7499 | 0.6545 | 0.7844 | 0.8610 | 0.7844 | 0.7064 | 0.7634 | 0.7113 | |
|
| 0.0721 | 7.0 | 4431 | 0.6114 | 0.6428 | 0.7488 | 0.6519 | 0.7855 | 0.8627 | 0.7855 | 0.7071 | 0.7638 | 0.7109 | |
|
|
|
|label | precision |recall |f1-score| support| |
|
|:-------------:|:---------:|:-----:|:------:|:------:| |
|
| Agriculture | 0.720 | 0.850|0.780|200| |
|
| Buildings | 0.636 |0.777|0.700|18| |
|
| Coastal Zone | 0.562|0.760|0.646|71| |
|
| Cross-Cutting Area | 0.569 |0.777|0.657|180| |
|
| Disaster Risk Management (DRM) | 0.567 |0.694|0.624|85| |
|
| Economy-wide | 0.461 |0.635| 0.534|85| |
|
| Education | 0.608|0.608|0.608|23| |
|
| Energy | 0.816 |0.838|0.827|254| |
|
| Environment | 0.561 |0.703|0.624|91| |
|
| Health | 0.708|0.750|0.728|68| |
|
| Industries | 0.660 |0.902|0.762|41| |
|
| LULUCF/Forestry | 0.676|0.844|0.751|193| |
|
| Social Development | 0.593 | 0.678|0.633|56| |
|
| Tourism | 0.551 |0.571|0.561|28| |
|
| Transport | 0.700|0.766|0.732|107| |
|
| Urban | 0.414 |0.568|0.479|51| |
|
| Waste | 0.658|0.881|0.753|59| |
|
| Water | 0.602 |0.773|0.677|106| |
|
|
|
### Environmental Impact |
|
Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon). |
|
- **Carbon Emitted**: 0.02867 kg of CO2 |
|
- **Hours Used**: 0.706 hours |
|
|
|
### Training Hardware |
|
- **On Cloud**: yes |
|
- **GPU Model**: 1 x Tesla T4 |
|
- **CPU Model**: Intel(R) Xeon(R) CPU @ 2.00GHz |
|
- **RAM Size**: 12.67 GB |
|
|
|
### Framework versions |
|
|
|
- Transformers 4.38.1 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.15.2 |