GIZ
/

File size: 5,906 Bytes
65249b8
 
 
 
 
 
 
 
a02111d
 
65249b8
 
 
 
 
 
 
a02111d
 
 
65249b8
 
 
 
 
 
 
 
 
 
 
 
 
 
a02111d
 
 
65249b8
 
 
 
 
 
 
a02111d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65249b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a02111d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65249b8
 
 
 
 
 
a02111d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
---
license: mit
base_model: BAAI/bge-base-en-v1.5
tags:
- generated_from_trainer
model-index:
- name: SECTOR-multilabel-bge
  results: []
datasets:
- GIZ/policy_classification
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# SECTOR-multilabel-bge

This model is a fine-tuned version of [BAAI/bge-base-en-v1.5](https://huggingface.co./BAAI/bge-base-en-v1.5) on the [Policy-Classification](https://huggingface.co./datasets/GIZ/policy_classification) dataset.

*The loss function BCEWithLogitsLoss is modified with pos_weight to focus on recall, therefore instead of loss the evaluation metrics are used to assess the model performance during training*
It achieves the following results on the evaluation set:
- Loss: 0.6114
- Precision-micro: 0.6428
- Precision-samples: 0.7488
- Precision-weighted: 0.6519
- Recall-micro: 0.7855
- Recall-samples: 0.8627
- Recall-weighted: 0.7855
- F1-micro: 0.7071
- F1-samples: 0.7638
- F1-weighted: 0.7109

## Model description

The purpose of this model is to predict multiple labels simultaneously from a given input data. Specifically, the model will predict Sector labels - Agriculture,Buildings,
Coastal Zone,Cross-Cutting Area,Disaster Risk Management (DRM),Economy-wide,Education,Energy,Environment,Health,Industries,LULUCF/Forestry,Social Development,Tourism,
Transport,Urban,Waste,Water

## Intended uses & limitations

More information needed

## Training and evaluation data

- Training Dataset: 10123
| Class | Positive Count of Class|
|:-------------|:--------|
| Agriculture | 2235 |
| Buildings | 169 |
| Coastal Zone | 698|
| Cross-Cutting Area | 1853 |
| Disaster Risk Management (DRM) | 814 |
| Economy-wide | 873 |
| Education | 180|
| Energy | 2847 |
| Environment | 905 |
| Health | 662|
| Industries | 419 |
| LULUCF/Forestry | 1861|
| Social Development | 507 |
| Tourism | 192 |
| Transport | 1173|
| Urban | 558 |
| Waste | 714|
| Water | 1207 |

- Validation Dataset: 936
| Class | Positive Count of Class|
|:-------------|:--------|
| Agriculture | 200 |
| Buildings | 18 |
| Coastal Zone | 71|
| Cross-Cutting Area | 180 |
| Disaster Risk Management (DRM) | 85 |
| Economy-wide | 85 |
| Education | 23|
| Energy | 254 |
| Environment | 91 |
| Health | 68|
| Industries | 41 |
| LULUCF/Forestry | 193|
| Social Development | 56 |
| Tourism | 28 |
| Transport | 107|
| Urban | 51 |
| Waste | 59|
| Water | 106 |

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 7.04e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 300
- num_epochs: 7

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision-micro | Precision-samples | Precision-weighted | Recall-micro | Recall-samples | Recall-weighted | F1-micro | F1-samples | F1-weighted |
|:-------------:|:-----:|:----:|:---------------:|:---------------:|:-----------------:|:------------------:|:------------:|:--------------:|:---------------:|:--------:|:----------:|:-----------:|
| 0.7077        | 1.0   | 633  | 0.5490          | 0.4226          | 0.5465            | 0.4954             | 0.8211       | 0.8908         | 0.8211          | 0.5580   | 0.6243     | 0.5977      |
| 0.4546        | 2.0   | 1266 | 0.5009          | 0.4899          | 0.6127            | 0.5202             | 0.8438       | 0.9023         | 0.8438          | 0.6199   | 0.6822     | 0.6366      |
| 0.3105        | 3.0   | 1899 | 0.4947          | 0.5005          | 0.6593            | 0.5317             | 0.8508       | 0.8970         | 0.8508          | 0.6303   | 0.7125     | 0.6474      |
| 0.2044        | 4.0   | 2532 | 0.5430          | 0.5757          | 0.7044            | 0.5970             | 0.8106       | 0.8801         | 0.8106          | 0.6733   | 0.7379     | 0.6834      |
| 0.1314        | 5.0   | 3165 | 0.5633          | 0.6132          | 0.7385            | 0.6271             | 0.8065       | 0.8772         | 0.8065          | 0.6967   | 0.7606     | 0.7032      |
| 0.0892        | 6.0   | 3798 | 0.6073          | 0.6425          | 0.7499            | 0.6545             | 0.7844       | 0.8610         | 0.7844          | 0.7064   | 0.7634     | 0.7113      |
| 0.0721        | 7.0   | 4431 | 0.6114          | 0.6428          | 0.7488            | 0.6519             | 0.7855       | 0.8627         | 0.7855          | 0.7071   | 0.7638     | 0.7109      |

|label          | precision |recall |f1-score| support|
|:-------------:|:---------:|:-----:|:------:|:------:|
| Agriculture | 0.720 | 0.850|0.780|200|
| Buildings | 0.636 |0.777|0.700|18|
| Coastal Zone | 0.562|0.760|0.646|71|
| Cross-Cutting Area | 0.569 |0.777|0.657|180|
| Disaster Risk Management (DRM) | 0.567 |0.694|0.624|85|
| Economy-wide | 0.461 |0.635|	0.534|85|
| Education | 0.608|0.608|0.608|23|
| Energy | 0.816 |0.838|0.827|254|
| Environment | 0.561 |0.703|0.624|91|
| Health | 0.708|0.750|0.728|68|
| Industries | 0.660 |0.902|0.762|41|
| LULUCF/Forestry | 0.676|0.844|0.751|193|
| Social Development | 0.593 |	0.678|0.633|56|
| Tourism | 0.551 |0.571|0.561|28|
| Transport | 0.700|0.766|0.732|107|
| Urban | 0.414 |0.568|0.479|51|
| Waste | 0.658|0.881|0.753|59|
| Water | 0.602 |0.773|0.677|106|

### Environmental Impact
Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
- **Carbon Emitted**: 0.02867 kg of CO2
- **Hours Used**: 0.706 hours

### Training Hardware
- **On Cloud**: yes
- **GPU Model**: 1 x Tesla T4
- **CPU Model**: Intel(R) Xeon(R) CPU @ 2.00GHz
- **RAM Size**: 12.67 GB

### Framework versions

- Transformers 4.38.1
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2