Update README.md
Browse files
README.md
CHANGED
@@ -6,6 +6,8 @@ tags:
|
|
6 |
model-index:
|
7 |
- name: SECTOR-multilabel-bge
|
8 |
results: []
|
|
|
|
|
9 |
---
|
10 |
|
11 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -13,7 +15,9 @@ should probably proofread and complete it, then remove this comment. -->
|
|
13 |
|
14 |
# SECTOR-multilabel-bge
|
15 |
|
16 |
-
This model is a fine-tuned version of [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) on the
|
|
|
|
|
17 |
It achieves the following results on the evaluation set:
|
18 |
- Loss: 0.6114
|
19 |
- Precision-micro: 0.6428
|
@@ -28,7 +32,9 @@ It achieves the following results on the evaluation set:
|
|
28 |
|
29 |
## Model description
|
30 |
|
31 |
-
|
|
|
|
|
32 |
|
33 |
## Intended uses & limitations
|
34 |
|
@@ -36,7 +42,49 @@ More information needed
|
|
36 |
|
37 |
## Training and evaluation data
|
38 |
|
39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
## Training procedure
|
42 |
|
@@ -64,10 +112,41 @@ The following hyperparameters were used during training:
|
|
64 |
| 0.0892 | 6.0 | 3798 | 0.6073 | 0.6425 | 0.7499 | 0.6545 | 0.7844 | 0.8610 | 0.7844 | 0.7064 | 0.7634 | 0.7113 |
|
65 |
| 0.0721 | 7.0 | 4431 | 0.6114 | 0.6428 | 0.7488 | 0.6519 | 0.7855 | 0.8627 | 0.7855 | 0.7071 | 0.7638 | 0.7109 |
|
66 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
### Framework versions
|
69 |
|
70 |
- Transformers 4.38.1
|
71 |
- Pytorch 2.1.0+cu121
|
72 |
- Datasets 2.18.0
|
73 |
-
- Tokenizers 0.15.2
|
|
|
6 |
model-index:
|
7 |
- name: SECTOR-multilabel-bge
|
8 |
results: []
|
9 |
+
datasets:
|
10 |
+
- GIZ/policy_classification
|
11 |
---
|
12 |
|
13 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
15 |
|
16 |
# SECTOR-multilabel-bge
|
17 |
|
18 |
+
This model is a fine-tuned version of [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) on the [Policy-Classification](https://huggingface.co/datasets/GIZ/policy_classification) dataset.
|
19 |
+
|
20 |
+
*The loss function BCEWithLogitsLoss is modified with pos_weight to focus on recall, therefore instead of loss the evaluation metrics are used to assess the model performance during training*
|
21 |
It achieves the following results on the evaluation set:
|
22 |
- Loss: 0.6114
|
23 |
- Precision-micro: 0.6428
|
|
|
32 |
|
33 |
## Model description
|
34 |
|
35 |
+
The purpose of this model is to predict multiple labels simultaneously from a given input data. Specifically, the model will predict Sector labels - Agriculture,Buildings,
|
36 |
+
Coastal Zone,Cross-Cutting Area,Disaster Risk Management (DRM),Economy-wide,Education,Energy,Environment,Health,Industries,LULUCF/Forestry,Social Development,Tourism,
|
37 |
+
Transport,Urban,Waste,Water
|
38 |
|
39 |
## Intended uses & limitations
|
40 |
|
|
|
42 |
|
43 |
## Training and evaluation data
|
44 |
|
45 |
+
- Training Dataset: 10123
|
46 |
+
| Class | Positive Count of Class|
|
47 |
+
|:-------------|:--------|
|
48 |
+
| Agriculture | 2235 |
|
49 |
+
| Buildings | 169 |
|
50 |
+
| Coastal Zone | 698|
|
51 |
+
| Cross-Cutting Area | 1853 |
|
52 |
+
| Disaster Risk Management (DRM) | 814 |
|
53 |
+
| Economy-wide | 873 |
|
54 |
+
| Education | 180|
|
55 |
+
| Energy | 2847 |
|
56 |
+
| Environment | 905 |
|
57 |
+
| Health | 662|
|
58 |
+
| Industries | 419 |
|
59 |
+
| LULUCF/Forestry | 1861|
|
60 |
+
| Social Development | 507 |
|
61 |
+
| Tourism | 192 |
|
62 |
+
| Transport | 1173|
|
63 |
+
| Urban | 558 |
|
64 |
+
| Waste | 714|
|
65 |
+
| Water | 1207 |
|
66 |
+
|
67 |
+
- Validation Dataset: 936
|
68 |
+
| Class | Positive Count of Class|
|
69 |
+
|:-------------|:--------|
|
70 |
+
| Agriculture | 200 |
|
71 |
+
| Buildings | 18 |
|
72 |
+
| Coastal Zone | 71|
|
73 |
+
| Cross-Cutting Area | 180 |
|
74 |
+
| Disaster Risk Management (DRM) | 85 |
|
75 |
+
| Economy-wide | 85 |
|
76 |
+
| Education | 23|
|
77 |
+
| Energy | 254 |
|
78 |
+
| Environment | 91 |
|
79 |
+
| Health | 68|
|
80 |
+
| Industries | 41 |
|
81 |
+
| LULUCF/Forestry | 193|
|
82 |
+
| Social Development | 56 |
|
83 |
+
| Tourism | 28 |
|
84 |
+
| Transport | 107|
|
85 |
+
| Urban | 51 |
|
86 |
+
| Waste | 59|
|
87 |
+
| Water | 106 |
|
88 |
|
89 |
## Training procedure
|
90 |
|
|
|
112 |
| 0.0892 | 6.0 | 3798 | 0.6073 | 0.6425 | 0.7499 | 0.6545 | 0.7844 | 0.8610 | 0.7844 | 0.7064 | 0.7634 | 0.7113 |
|
113 |
| 0.0721 | 7.0 | 4431 | 0.6114 | 0.6428 | 0.7488 | 0.6519 | 0.7855 | 0.8627 | 0.7855 | 0.7071 | 0.7638 | 0.7109 |
|
114 |
|
115 |
+
|label | precision |recall |f1-score| support|
|
116 |
+
|:-------------:|:---------:|:-----:|:------:|:------:|
|
117 |
+
| Agriculture | 0.720 | 0.850|0.780|200|
|
118 |
+
| Buildings | 0.636 |0.777|0.700|18|
|
119 |
+
| Coastal Zone | 0.562|0.760|0.646|71|
|
120 |
+
| Cross-Cutting Area | 0.569 |0.777|0.657|180|
|
121 |
+
| Disaster Risk Management (DRM) | 0.567 |0.694|0.624|85|
|
122 |
+
| Economy-wide | 0.461 |0.635| 0.534|85|
|
123 |
+
| Education | 0.608|0.608|0.608|23|
|
124 |
+
| Energy | 0.816 |0.838|0.827|254|
|
125 |
+
| Environment | 0.561 |0.703|0.624|91|
|
126 |
+
| Health | 0.708|0.750|0.728|68|
|
127 |
+
| Industries | 0.660 |0.902|0.762|41|
|
128 |
+
| LULUCF/Forestry | 0.676|0.844|0.751|193|
|
129 |
+
| Social Development | 0.593 | 0.678|0.633|56|
|
130 |
+
| Tourism | 0.551 |0.571|0.561|28|
|
131 |
+
| Transport | 0.700|0.766|0.732|107|
|
132 |
+
| Urban | 0.414 |0.568|0.479|51|
|
133 |
+
| Waste | 0.658|0.881|0.753|59|
|
134 |
+
| Water | 0.602 |0.773|0.677|106|
|
135 |
+
|
136 |
+
### Environmental Impact
|
137 |
+
Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
|
138 |
+
- **Carbon Emitted**: 0.02867 kg of CO2
|
139 |
+
- **Hours Used**: 0.706 hours
|
140 |
+
|
141 |
+
### Training Hardware
|
142 |
+
- **On Cloud**: yes
|
143 |
+
- **GPU Model**: 1 x Tesla T4
|
144 |
+
- **CPU Model**: Intel(R) Xeon(R) CPU @ 2.00GHz
|
145 |
+
- **RAM Size**: 12.67 GB
|
146 |
|
147 |
### Framework versions
|
148 |
|
149 |
- Transformers 4.38.1
|
150 |
- Pytorch 2.1.0+cu121
|
151 |
- Datasets 2.18.0
|
152 |
+
- Tokenizers 0.15.2
|