Dagobert42's picture
Push ../models/xlnet/xlnet-base-cased/biored-augmentations-only-super/ trained on biored-train_200_splits.pt (200 samples)
721a37a verified
---
language:
- en
license: mit
base_model: xlnet-base-cased
tags:
- low-resource NER
- token_classification
- biomedicine
- medical NER
- generated_from_trainer
datasets:
- medicine
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: Dagobert42/xlnet-base-cased-biored-augmented-super
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Dagobert42/xlnet-base-cased-biored-augmented-super
This model is a fine-tuned version of [xlnet-base-cased](https://huggingface.co./xlnet-base-cased) on the bigbio/biored dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2035
- Accuracy: 0.9315
- Precision: 0.8447
- Recall: 0.8503
- F1: 0.8469
- Weighted F1: 0.9318
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Weighted F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:-----------:|
| No log | 1.0 | 25 | 0.2497 | 0.9156 | 0.8595 | 0.7951 | 0.8242 | 0.9144 |
| No log | 2.0 | 50 | 0.2404 | 0.9215 | 0.843 | 0.838 | 0.8404 | 0.9213 |
| No log | 3.0 | 75 | 0.2595 | 0.9142 | 0.82 | 0.8571 | 0.8369 | 0.9161 |
| No log | 4.0 | 100 | 0.2448 | 0.9266 | 0.8539 | 0.8261 | 0.8396 | 0.9257 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.0.1+cu117
- Datasets 2.12.0
- Tokenizers 0.15.0