Push ../models/xlnet/xlnet-base-cased/biored-augmentations-only-super/ trained on biored-train_200_splits.pt (200 samples)
721a37a
verified
language: | |
- en | |
license: mit | |
base_model: xlnet-base-cased | |
tags: | |
- low-resource NER | |
- token_classification | |
- biomedicine | |
- medical NER | |
- generated_from_trainer | |
datasets: | |
- medicine | |
metrics: | |
- accuracy | |
- precision | |
- recall | |
- f1 | |
model-index: | |
- name: Dagobert42/xlnet-base-cased-biored-augmented-super | |
results: [] | |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You | |
should probably proofread and complete it, then remove this comment. --> | |
# Dagobert42/xlnet-base-cased-biored-augmented-super | |
This model is a fine-tuned version of [xlnet-base-cased](https://huggingface.co./xlnet-base-cased) on the bigbio/biored dataset. | |
It achieves the following results on the evaluation set: | |
- Loss: 0.2035 | |
- Accuracy: 0.9315 | |
- Precision: 0.8447 | |
- Recall: 0.8503 | |
- F1: 0.8469 | |
- Weighted F1: 0.9318 | |
## Model description | |
More information needed | |
## Intended uses & limitations | |
More information needed | |
## Training and evaluation data | |
More information needed | |
## Training procedure | |
### Training hyperparameters | |
The following hyperparameters were used during training: | |
- learning_rate: 2e-05 | |
- train_batch_size: 8 | |
- eval_batch_size: 8 | |
- seed: 42 | |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 | |
- lr_scheduler_type: linear | |
- num_epochs: 50 | |
### Training results | |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Weighted F1 | | |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:-----------:| | |
| No log | 1.0 | 25 | 0.2497 | 0.9156 | 0.8595 | 0.7951 | 0.8242 | 0.9144 | | |
| No log | 2.0 | 50 | 0.2404 | 0.9215 | 0.843 | 0.838 | 0.8404 | 0.9213 | | |
| No log | 3.0 | 75 | 0.2595 | 0.9142 | 0.82 | 0.8571 | 0.8369 | 0.9161 | | |
| No log | 4.0 | 100 | 0.2448 | 0.9266 | 0.8539 | 0.8261 | 0.8396 | 0.9257 | | |
### Framework versions | |
- Transformers 4.35.2 | |
- Pytorch 2.0.1+cu117 | |
- Datasets 2.12.0 | |
- Tokenizers 0.15.0 | |