--- language: - en license: mit base_model: xlnet-base-cased tags: - low-resource NER - token_classification - biomedicine - medical NER - generated_from_trainer datasets: - medicine metrics: - accuracy - precision - recall - f1 model-index: - name: Dagobert42/xlnet-base-cased-biored-augmented-super results: [] --- # Dagobert42/xlnet-base-cased-biored-augmented-super This model is a fine-tuned version of [xlnet-base-cased](https://huggingface.co./xlnet-base-cased) on the bigbio/biored dataset. It achieves the following results on the evaluation set: - Loss: 0.2035 - Accuracy: 0.9315 - Precision: 0.8447 - Recall: 0.8503 - F1: 0.8469 - Weighted F1: 0.9318 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Weighted F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:-----------:| | No log | 1.0 | 25 | 0.2497 | 0.9156 | 0.8595 | 0.7951 | 0.8242 | 0.9144 | | No log | 2.0 | 50 | 0.2404 | 0.9215 | 0.843 | 0.838 | 0.8404 | 0.9213 | | No log | 3.0 | 75 | 0.2595 | 0.9142 | 0.82 | 0.8571 | 0.8369 | 0.9161 | | No log | 4.0 | 100 | 0.2448 | 0.9266 | 0.8539 | 0.8261 | 0.8396 | 0.9257 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.0.1+cu117 - Datasets 2.12.0 - Tokenizers 0.15.0