File size: 2,074 Bytes
721a37a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
---
language:
- en
license: mit
base_model: xlnet-base-cased
tags:
- low-resource NER
- token_classification
- biomedicine
- medical NER
- generated_from_trainer
datasets:
- medicine
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: Dagobert42/xlnet-base-cased-biored-augmented-super
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Dagobert42/xlnet-base-cased-biored-augmented-super

This model is a fine-tuned version of [xlnet-base-cased](https://huggingface.co./xlnet-base-cased) on the bigbio/biored dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2035
- Accuracy: 0.9315
- Precision: 0.8447
- Recall: 0.8503
- F1: 0.8469
- Weighted F1: 0.9318

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1     | Weighted F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:-----------:|
| No log        | 1.0   | 25   | 0.2497          | 0.9156   | 0.8595    | 0.7951 | 0.8242 | 0.9144      |
| No log        | 2.0   | 50   | 0.2404          | 0.9215   | 0.843     | 0.838  | 0.8404 | 0.9213      |
| No log        | 3.0   | 75   | 0.2595          | 0.9142   | 0.82      | 0.8571 | 0.8369 | 0.9161      |
| No log        | 4.0   | 100  | 0.2448          | 0.9266   | 0.8539    | 0.8261 | 0.8396 | 0.9257      |


### Framework versions

- Transformers 4.35.2
- Pytorch 2.0.1+cu117
- Datasets 2.12.0
- Tokenizers 0.15.0