flux_pet_joy_con_v2 / README.md
zwloong's picture
Model card auto-generated by SimpleTuner
67b3733 verified
metadata
license: other
base_model: black-forest-labs/FLUX.1-dev
tags:
  - flux
  - flux-diffusers
  - text-to-image
  - diffusers
  - simpletuner
  - not-for-all-audiences
  - lora
  - template:sd-lora
  - standard
inference: true
widget:
  - text: unconditional (blank prompt)
    parameters:
      negative_prompt: blurry, cropped, ugly
    output:
      url: ./assets/image_0_0.png
  - text: >-
      A stylized, animated bird with vibrant red feathers on the head and a
      yellow patch on its wing, light type pokemon, standing, animal focus, on
      white background
    parameters:
      negative_prompt: blurry, cropped, ugly
    output:
      url: ./assets/image_1_0.png

flux_pet_joy_con_v2

This is a standard PEFT LoRA derived from black-forest-labs/FLUX.1-dev.

The main validation prompt used during training was:

A stylized, animated bird with vibrant red feathers on the head and a yellow patch on its wing, light type pokemon, standing, animal focus, on white background

Validation settings

  • CFG: 3.0
  • CFG Rescale: 0.0
  • Steps: 20
  • Sampler: None
  • Seed: 42
  • Resolution: 1024x1024

Note: The validation settings are not necessarily the same as the training settings.

You can find some example images in the following gallery:

Prompt
unconditional (blank prompt)
Negative Prompt
blurry, cropped, ugly
Prompt
A stylized, animated bird with vibrant red feathers on the head and a yellow patch on its wing, light type pokemon, standing, animal focus, on white background
Negative Prompt
blurry, cropped, ugly

The text encoder was not trained. You may reuse the base model text encoder for inference.

Training settings

  • Training epochs: 8
  • Training steps: 30000
  • Learning rate: 8e-05
  • Effective batch size: 1
    • Micro-batch size: 1
    • Gradient accumulation steps: 1
    • Number of GPUs: 1
  • Prediction type: flow-matching
  • Rescaled betas zero SNR: False
  • Optimizer: adamw_bf16
  • Precision: Pure BF16
  • Quantised: Yes: int8-quanto
  • Xformers: Not used
  • LoRA Rank: 64
  • LoRA Alpha: None
  • LoRA Dropout: 0.1
  • LoRA initialisation style: default

Datasets

flux_pet_joy_con_v2-512

  • Repeats: 0
  • Total number of images: 948
  • Total number of aspect buckets: 1
  • Resolution: 0.262144 megapixels
  • Cropped: False
  • Crop style: None
  • Crop aspect: None

flux_pet_joy_con_v2-1024

  • Repeats: 0
  • Total number of images: 869
  • Total number of aspect buckets: 1
  • Resolution: 1.048576 megapixels
  • Cropped: False
  • Crop style: None
  • Crop aspect: None

flux_pet_joy_con_v2-512-crop

  • Repeats: 0
  • Total number of images: 869
  • Total number of aspect buckets: 1
  • Resolution: 0.262144 megapixels
  • Cropped: True
  • Crop style: center
  • Crop aspect: square

flux_pet_joy_con_v2-1024-crop

  • Repeats: 0
  • Total number of images: 948
  • Total number of aspect buckets: 1
  • Resolution: 1.048576 megapixels
  • Cropped: True
  • Crop style: center
  • Crop aspect: square

Inference

import torch
from diffusers import DiffusionPipeline

model_id = 'black-forest-labs/FLUX.1-dev'
adapter_id = 'zwloong/flux_pet_joy_con_v2'
pipeline = DiffusionPipeline.from_pretrained(model_id)
pipeline.load_lora_weights(adapter_id)

prompt = "A stylized, animated bird with vibrant red feathers on the head and a yellow patch on its wing, light type pokemon, standing, animal focus, on white background"

pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu')
image = pipeline(
    prompt=prompt,
    num_inference_steps=20,
    generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(1641421826),
    width=1024,
    height=1024,
    guidance_scale=3.0,
).images[0]
image.save("output.png", format="PNG")