File size: 3,593 Bytes
2cf8199
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3409a0d
67b3733
2cf8199
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
---
license: other
base_model: "black-forest-labs/FLUX.1-dev"
tags:
  - flux
  - flux-diffusers
  - text-to-image
  - diffusers
  - simpletuner
  - not-for-all-audiences
  - lora
  - template:sd-lora
  - standard
inference: true
widget:
- text: 'unconditional (blank prompt)'
  parameters:
    negative_prompt: 'blurry, cropped, ugly'
  output:
    url: ./assets/image_0_0.png
- text: 'A stylized, animated bird with vibrant red feathers on the head and a yellow patch on its wing, light type pokemon, standing, animal focus, on white background'
  parameters:
    negative_prompt: 'blurry, cropped, ugly'
  output:
    url: ./assets/image_1_0.png
---

# flux_pet_joy_con_v2

This is a standard PEFT LoRA derived from [black-forest-labs/FLUX.1-dev](https://huggingface.co./black-forest-labs/FLUX.1-dev).


The main validation prompt used during training was:



```
A stylized, animated bird with vibrant red feathers on the head and a yellow patch on its wing, light type pokemon, standing, animal focus, on white background
```

## Validation settings
- CFG: `3.0`
- CFG Rescale: `0.0`
- Steps: `20`
- Sampler: `None`
- Seed: `42`
- Resolution: `1024x1024`

Note: The validation settings are not necessarily the same as the [training settings](#training-settings).

You can find some example images in the following gallery:


<Gallery />

The text encoder **was not** trained.
You may reuse the base model text encoder for inference.


## Training settings

- Training epochs: 8
- Training steps: 30000
- Learning rate: 8e-05
- Effective batch size: 1
  - Micro-batch size: 1
  - Gradient accumulation steps: 1
  - Number of GPUs: 1
- Prediction type: flow-matching
- Rescaled betas zero SNR: False
- Optimizer: adamw_bf16
- Precision: Pure BF16
- Quantised: Yes: int8-quanto
- Xformers: Not used
- LoRA Rank: 64
- LoRA Alpha: None
- LoRA Dropout: 0.1
- LoRA initialisation style: default
    

## Datasets

### flux_pet_joy_con_v2-512
- Repeats: 0
- Total number of images: 948
- Total number of aspect buckets: 1
- Resolution: 0.262144 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
### flux_pet_joy_con_v2-1024
- Repeats: 0
- Total number of images: 869
- Total number of aspect buckets: 1
- Resolution: 1.048576 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
### flux_pet_joy_con_v2-512-crop
- Repeats: 0
- Total number of images: 869
- Total number of aspect buckets: 1
- Resolution: 0.262144 megapixels
- Cropped: True
- Crop style: center
- Crop aspect: square
### flux_pet_joy_con_v2-1024-crop
- Repeats: 0
- Total number of images: 948
- Total number of aspect buckets: 1
- Resolution: 1.048576 megapixels
- Cropped: True
- Crop style: center
- Crop aspect: square


## Inference


```python
import torch
from diffusers import DiffusionPipeline

model_id = 'black-forest-labs/FLUX.1-dev'
adapter_id = 'zwloong/flux_pet_joy_con_v2'
pipeline = DiffusionPipeline.from_pretrained(model_id)
pipeline.load_lora_weights(adapter_id)

prompt = "A stylized, animated bird with vibrant red feathers on the head and a yellow patch on its wing, light type pokemon, standing, animal focus, on white background"

pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu')
image = pipeline(
    prompt=prompt,
    num_inference_steps=20,
    generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(1641421826),
    width=1024,
    height=1024,
    guidance_scale=3.0,
).images[0]
image.save("output.png", format="PNG")
```