|
--- |
|
license: apache-2.0 |
|
base_model: allenai/longformer-base-4096 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- azaheadhealth |
|
metrics: |
|
- accuracy |
|
- f1 |
|
- precision |
|
- recall |
|
model-index: |
|
- name: azahead-longformer-v1.1 |
|
results: |
|
- task: |
|
name: Text Classification |
|
type: text-classification |
|
dataset: |
|
name: azaheadhealth |
|
type: azaheadhealth |
|
config: small |
|
split: test |
|
args: small |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.875 |
|
- name: F1 |
|
type: f1 |
|
value: 0.8 |
|
- name: Precision |
|
type: precision |
|
value: 0.75 |
|
- name: Recall |
|
type: recall |
|
value: 0.8571428571428571 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# azahead-longformer-v1.1 |
|
|
|
This model is a fine-tuned version of [allenai/longformer-base-4096](https://huggingface.co./allenai/longformer-base-4096) on the azaheadhealth dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4798 |
|
- Accuracy: 0.875 |
|
- F1: 0.8 |
|
- Precision: 0.75 |
|
- Recall: 0.8571 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 8 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| |
|
| 0.6565 | 1.0 | 20 | 0.5100 | 0.7083 | 0.0 | 0.0 | 0.0 | |
|
| 0.4659 | 2.0 | 40 | 0.4061 | 0.7917 | 0.4444 | 1.0 | 0.2857 | |
|
| 0.3536 | 3.0 | 60 | 0.4171 | 0.7917 | 0.5455 | 0.75 | 0.4286 | |
|
| 0.2279 | 4.0 | 80 | 0.4798 | 0.875 | 0.8 | 0.75 | 0.8571 | |
|
| 0.1154 | 5.0 | 100 | 0.5981 | 0.7917 | 0.5455 | 0.75 | 0.4286 | |
|
| 0.0541 | 6.0 | 120 | 0.6664 | 0.8333 | 0.7143 | 0.7143 | 0.7143 | |
|
| 0.037 | 7.0 | 140 | 0.7045 | 0.875 | 0.8 | 0.75 | 0.8571 | |
|
| 0.0238 | 8.0 | 160 | 0.7787 | 0.8333 | 0.6667 | 0.8 | 0.5714 | |
|
| 0.0082 | 9.0 | 180 | 0.7844 | 0.8333 | 0.6667 | 0.8 | 0.5714 | |
|
| 0.0054 | 10.0 | 200 | 0.7835 | 0.7917 | 0.6154 | 0.6667 | 0.5714 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.31.0 |
|
- Pytorch 2.2.1+cu121 |
|
- Datasets 2.16.1 |
|
- Tokenizers 0.13.2 |
|
|