--- license: apache-2.0 base_model: allenai/longformer-base-4096 tags: - generated_from_trainer datasets: - azaheadhealth metrics: - accuracy - f1 - precision - recall model-index: - name: azahead-longformer-v1.1 results: - task: name: Text Classification type: text-classification dataset: name: azaheadhealth type: azaheadhealth config: small split: test args: small metrics: - name: Accuracy type: accuracy value: 0.875 - name: F1 type: f1 value: 0.8 - name: Precision type: precision value: 0.75 - name: Recall type: recall value: 0.8571428571428571 --- # azahead-longformer-v1.1 This model is a fine-tuned version of [allenai/longformer-base-4096](https://huggingface.co./allenai/longformer-base-4096) on the azaheadhealth dataset. It achieves the following results on the evaluation set: - Loss: 0.4798 - Accuracy: 0.875 - F1: 0.8 - Precision: 0.75 - Recall: 0.8571 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.6565 | 1.0 | 20 | 0.5100 | 0.7083 | 0.0 | 0.0 | 0.0 | | 0.4659 | 2.0 | 40 | 0.4061 | 0.7917 | 0.4444 | 1.0 | 0.2857 | | 0.3536 | 3.0 | 60 | 0.4171 | 0.7917 | 0.5455 | 0.75 | 0.4286 | | 0.2279 | 4.0 | 80 | 0.4798 | 0.875 | 0.8 | 0.75 | 0.8571 | | 0.1154 | 5.0 | 100 | 0.5981 | 0.7917 | 0.5455 | 0.75 | 0.4286 | | 0.0541 | 6.0 | 120 | 0.6664 | 0.8333 | 0.7143 | 0.7143 | 0.7143 | | 0.037 | 7.0 | 140 | 0.7045 | 0.875 | 0.8 | 0.75 | 0.8571 | | 0.0238 | 8.0 | 160 | 0.7787 | 0.8333 | 0.6667 | 0.8 | 0.5714 | | 0.0082 | 9.0 | 180 | 0.7844 | 0.8333 | 0.6667 | 0.8 | 0.5714 | | 0.0054 | 10.0 | 200 | 0.7835 | 0.7917 | 0.6154 | 0.6667 | 0.5714 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.2.1+cu121 - Datasets 2.16.1 - Tokenizers 0.13.2