zuazo's picture
End of training
e70e5e6 verified
metadata
language:
  - eu
license: apache-2.0
base_model: openai/whisper-medium
tags:
  - whisper-event
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_13_0
metrics:
  - wer
model-index:
  - name: Whisper Medium Basque
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: mozilla-foundation/common_voice_13_0 eu
          type: mozilla-foundation/common_voice_13_0
          config: eu
          split: validation
          args: eu
        metrics:
          - name: Wer
            type: wer
            value: 14.112716355356747

Whisper Medium Basque

This model is a fine-tuned version of openai/whisper-medium on the mozilla-foundation/common_voice_13_0 eu dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3985
  • Wer: 14.1127

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 64
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 10000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.1127 5.85 1000 0.2776 17.5623
0.0225 11.7 2000 0.3129 15.6320
0.0074 17.54 3000 0.3277 14.9530
0.0041 23.39 4000 0.3551 14.8018
0.0032 29.24 5000 0.3698 14.6245
0.0019 35.09 6000 0.3877 14.6084
0.0014 40.94 7000 0.3891 14.4976
0.0008 46.78 8000 0.3946 14.2759
0.0007 52.63 9000 0.3987 14.3182
0.0005 58.48 10000 0.3985 14.1127

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.2.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.1