--- language: - eu license: apache-2.0 base_model: openai/whisper-medium tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_13_0 metrics: - wer model-index: - name: Whisper Medium Basque results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_13_0 eu type: mozilla-foundation/common_voice_13_0 config: eu split: validation args: eu metrics: - name: Wer type: wer value: 14.112716355356747 --- # Whisper Medium Basque This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co./openai/whisper-medium) on the mozilla-foundation/common_voice_13_0 eu dataset. It achieves the following results on the evaluation set: - Loss: 0.3985 - Wer: 14.1127 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 10000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:-------:| | 0.1127 | 5.85 | 1000 | 0.2776 | 17.5623 | | 0.0225 | 11.7 | 2000 | 0.3129 | 15.6320 | | 0.0074 | 17.54 | 3000 | 0.3277 | 14.9530 | | 0.0041 | 23.39 | 4000 | 0.3551 | 14.8018 | | 0.0032 | 29.24 | 5000 | 0.3698 | 14.6245 | | 0.0019 | 35.09 | 6000 | 0.3877 | 14.6084 | | 0.0014 | 40.94 | 7000 | 0.3891 | 14.4976 | | 0.0008 | 46.78 | 8000 | 0.3946 | 14.2759 | | 0.0007 | 52.63 | 9000 | 0.3987 | 14.3182 | | 0.0005 | 58.48 | 10000 | 0.3985 | 14.1127 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.2.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1