|
--- |
|
license: apache-2.0 |
|
base_model: facebook/convnextv2-nano-22k-384 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- precision |
|
- recall |
|
- f1 |
|
model-index: |
|
- name: 10-convnextv2-nano-22k-384-finetuned-spiderTraining20-500 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# 10-convnextv2-nano-22k-384-finetuned-spiderTraining20-500 |
|
|
|
This model is a fine-tuned version of [facebook/convnextv2-nano-22k-384](https://huggingface.co./facebook/convnextv2-nano-22k-384) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2969 |
|
- Accuracy: 0.9099 |
|
- Precision: 0.9049 |
|
- Recall: 0.9057 |
|
- F1: 0.9048 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 25 |
|
- eval_batch_size: 25 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 100 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| |
|
| 1.7156 | 1.0 | 80 | 1.4314 | 0.6316 | 0.6182 | 0.6246 | 0.6155 | |
|
| 0.7565 | 2.0 | 160 | 0.6340 | 0.8168 | 0.8213 | 0.8074 | 0.8095 | |
|
| 0.5802 | 3.0 | 240 | 0.4633 | 0.8589 | 0.8566 | 0.8545 | 0.8539 | |
|
| 0.4765 | 4.0 | 320 | 0.4006 | 0.8759 | 0.8746 | 0.8709 | 0.8708 | |
|
| 0.3644 | 5.0 | 400 | 0.3530 | 0.9019 | 0.8995 | 0.8984 | 0.8979 | |
|
| 0.3622 | 6.0 | 480 | 0.3326 | 0.9049 | 0.9019 | 0.9020 | 0.9013 | |
|
| 0.3232 | 7.0 | 560 | 0.3180 | 0.8939 | 0.8910 | 0.8889 | 0.8892 | |
|
| 0.2968 | 8.0 | 640 | 0.3018 | 0.9089 | 0.9050 | 0.9039 | 0.9039 | |
|
| 0.285 | 9.0 | 720 | 0.3097 | 0.9029 | 0.8979 | 0.8991 | 0.8974 | |
|
| 0.2889 | 10.0 | 800 | 0.2969 | 0.9099 | 0.9049 | 0.9057 | 0.9048 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.33.3 |
|
- Pytorch 2.0.1+cu117 |
|
- Datasets 2.14.5 |
|
- Tokenizers 0.13.3 |
|
|