File size: 2,604 Bytes
d95051d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
---
license: apache-2.0
base_model: facebook/convnextv2-nano-22k-384
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: 10-convnextv2-nano-22k-384-finetuned-spiderTraining20-500
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# 10-convnextv2-nano-22k-384-finetuned-spiderTraining20-500

This model is a fine-tuned version of [facebook/convnextv2-nano-22k-384](https://huggingface.co./facebook/convnextv2-nano-22k-384) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2969
- Accuracy: 0.9099
- Precision: 0.9049
- Recall: 0.9057
- F1: 0.9048

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 25
- eval_batch_size: 25
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 4
- total_train_batch_size: 100
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1     |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
| 1.7156        | 1.0   | 80   | 1.4314          | 0.6316   | 0.6182    | 0.6246 | 0.6155 |
| 0.7565        | 2.0   | 160  | 0.6340          | 0.8168   | 0.8213    | 0.8074 | 0.8095 |
| 0.5802        | 3.0   | 240  | 0.4633          | 0.8589   | 0.8566    | 0.8545 | 0.8539 |
| 0.4765        | 4.0   | 320  | 0.4006          | 0.8759   | 0.8746    | 0.8709 | 0.8708 |
| 0.3644        | 5.0   | 400  | 0.3530          | 0.9019   | 0.8995    | 0.8984 | 0.8979 |
| 0.3622        | 6.0   | 480  | 0.3326          | 0.9049   | 0.9019    | 0.9020 | 0.9013 |
| 0.3232        | 7.0   | 560  | 0.3180          | 0.8939   | 0.8910    | 0.8889 | 0.8892 |
| 0.2968        | 8.0   | 640  | 0.3018          | 0.9089   | 0.9050    | 0.9039 | 0.9039 |
| 0.285         | 9.0   | 720  | 0.3097          | 0.9029   | 0.8979    | 0.8991 | 0.8974 |
| 0.2889        | 10.0  | 800  | 0.2969          | 0.9099   | 0.9049    | 0.9057 | 0.9048 |


### Framework versions

- Transformers 4.33.3
- Pytorch 2.0.1+cu117
- Datasets 2.14.5
- Tokenizers 0.13.3