|
--- |
|
license: apache-2.0 |
|
base_model: facebook/convnextv2-huge-22k-384 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- precision |
|
- recall |
|
- f1 |
|
model-index: |
|
- name: 10-convnextv2-huge-22k-384-finetuned-spiderTraining20-500 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# 10-convnextv2-huge-22k-384-finetuned-spiderTraining20-500 |
|
|
|
This model is a fine-tuned version of [facebook/convnextv2-huge-22k-384](https://huggingface.co./facebook/convnextv2-huge-22k-384) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0908 |
|
- Accuracy: 0.9830 |
|
- Precision: 0.9830 |
|
- Recall: 0.9833 |
|
- F1: 0.9830 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 5 |
|
- eval_batch_size: 5 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 20 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| |
|
| 0.4733 | 1.0 | 399 | 0.2998 | 0.9149 | 0.9195 | 0.9099 | 0.9121 | |
|
| 0.3925 | 2.0 | 799 | 0.1649 | 0.9510 | 0.9512 | 0.9502 | 0.9498 | |
|
| 0.3932 | 3.0 | 1199 | 0.4475 | 0.8689 | 0.9166 | 0.8633 | 0.8785 | |
|
| 0.2441 | 4.0 | 1599 | 0.1623 | 0.9469 | 0.9519 | 0.9449 | 0.9462 | |
|
| 0.1249 | 5.0 | 1998 | 0.1646 | 0.9570 | 0.9609 | 0.9546 | 0.9565 | |
|
| 0.2255 | 6.0 | 2398 | 0.1560 | 0.9660 | 0.9666 | 0.9644 | 0.9646 | |
|
| 0.1426 | 7.0 | 2798 | 0.1115 | 0.9720 | 0.9741 | 0.9725 | 0.9731 | |
|
| 0.102 | 8.0 | 3198 | 0.0927 | 0.9750 | 0.9754 | 0.9757 | 0.9754 | |
|
| 0.0663 | 9.0 | 3597 | 0.0894 | 0.9820 | 0.9826 | 0.9821 | 0.9821 | |
|
| 0.0556 | 9.98 | 3990 | 0.0908 | 0.9830 | 0.9830 | 0.9833 | 0.9830 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.33.3 |
|
- Pytorch 2.0.1+cu117 |
|
- Datasets 2.14.5 |
|
- Tokenizers 0.13.3 |
|
|