zkdeng commited on
Commit
2e0c0b4
1 Parent(s): a925638

Model save

Browse files
Files changed (1) hide show
  1. README.md +79 -0
README.md ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: facebook/convnextv2-huge-22k-384
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - accuracy
8
+ - precision
9
+ - recall
10
+ - f1
11
+ model-index:
12
+ - name: 10-convnextv2-huge-22k-384-finetuned-spiderTraining20-500
13
+ results: []
14
+ ---
15
+
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
18
+
19
+ # 10-convnextv2-huge-22k-384-finetuned-spiderTraining20-500
20
+
21
+ This model is a fine-tuned version of [facebook/convnextv2-huge-22k-384](https://huggingface.co/facebook/convnextv2-huge-22k-384) on an unknown dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: 0.0908
24
+ - Accuracy: 0.9830
25
+ - Precision: 0.9830
26
+ - Recall: 0.9833
27
+ - F1: 0.9830
28
+
29
+ ## Model description
30
+
31
+ More information needed
32
+
33
+ ## Intended uses & limitations
34
+
35
+ More information needed
36
+
37
+ ## Training and evaluation data
38
+
39
+ More information needed
40
+
41
+ ## Training procedure
42
+
43
+ ### Training hyperparameters
44
+
45
+ The following hyperparameters were used during training:
46
+ - learning_rate: 5e-05
47
+ - train_batch_size: 5
48
+ - eval_batch_size: 5
49
+ - seed: 42
50
+ - distributed_type: multi-GPU
51
+ - gradient_accumulation_steps: 4
52
+ - total_train_batch_size: 20
53
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
54
+ - lr_scheduler_type: linear
55
+ - lr_scheduler_warmup_ratio: 0.1
56
+ - num_epochs: 10
57
+
58
+ ### Training results
59
+
60
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
61
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
62
+ | 0.4733 | 1.0 | 399 | 0.2998 | 0.9149 | 0.9195 | 0.9099 | 0.9121 |
63
+ | 0.3925 | 2.0 | 799 | 0.1649 | 0.9510 | 0.9512 | 0.9502 | 0.9498 |
64
+ | 0.3932 | 3.0 | 1199 | 0.4475 | 0.8689 | 0.9166 | 0.8633 | 0.8785 |
65
+ | 0.2441 | 4.0 | 1599 | 0.1623 | 0.9469 | 0.9519 | 0.9449 | 0.9462 |
66
+ | 0.1249 | 5.0 | 1998 | 0.1646 | 0.9570 | 0.9609 | 0.9546 | 0.9565 |
67
+ | 0.2255 | 6.0 | 2398 | 0.1560 | 0.9660 | 0.9666 | 0.9644 | 0.9646 |
68
+ | 0.1426 | 7.0 | 2798 | 0.1115 | 0.9720 | 0.9741 | 0.9725 | 0.9731 |
69
+ | 0.102 | 8.0 | 3198 | 0.0927 | 0.9750 | 0.9754 | 0.9757 | 0.9754 |
70
+ | 0.0663 | 9.0 | 3597 | 0.0894 | 0.9820 | 0.9826 | 0.9821 | 0.9821 |
71
+ | 0.0556 | 9.98 | 3990 | 0.0908 | 0.9830 | 0.9830 | 0.9833 | 0.9830 |
72
+
73
+
74
+ ### Framework versions
75
+
76
+ - Transformers 4.33.3
77
+ - Pytorch 2.0.1+cu117
78
+ - Datasets 2.14.5
79
+ - Tokenizers 0.13.3