|
--- |
|
license: apache-2.0 |
|
base_model: facebook/convnextv2-base-22k-384 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- precision |
|
- recall |
|
- f1 |
|
model-index: |
|
- name: 10-convnextv2-base-22k-384-finetuned-spiderTraining1000-1000 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# 10-convnextv2-base-22k-384-finetuned-spiderTraining1000-1000 |
|
|
|
This model is a fine-tuned version of [facebook/convnextv2-base-22k-384](https://huggingface.co./facebook/convnextv2-base-22k-384) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3586 |
|
- Accuracy: 0.9180 |
|
- Precision: 0.9196 |
|
- Recall: 0.9160 |
|
- F1: 0.9168 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0005 |
|
- train_batch_size: 27 |
|
- eval_batch_size: 27 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 108 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |
|
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:---------:|:------:|:------:| |
|
| 2.0397 | 1.0 | 4064 | 1.4192 | 0.6356 | 0.6956 | 0.6130 | 0.6167 | |
|
| 1.3997 | 2.0 | 8129 | 0.9638 | 0.7454 | 0.7708 | 0.7320 | 0.7325 | |
|
| 1.1393 | 3.0 | 12193 | 0.7564 | 0.7973 | 0.8102 | 0.7883 | 0.7884 | |
|
| 0.9942 | 4.0 | 16258 | 0.6256 | 0.8331 | 0.8464 | 0.8276 | 0.8294 | |
|
| 0.8572 | 5.0 | 20322 | 0.5610 | 0.8507 | 0.8632 | 0.8441 | 0.8467 | |
|
| 0.6445 | 6.0 | 24387 | 0.4866 | 0.8730 | 0.8802 | 0.8688 | 0.8697 | |
|
| 0.5444 | 7.0 | 28451 | 0.4496 | 0.8852 | 0.8909 | 0.8812 | 0.8829 | |
|
| 0.4955 | 8.0 | 32516 | 0.4241 | 0.8986 | 0.9039 | 0.8952 | 0.8974 | |
|
| 0.448 | 9.0 | 36580 | 0.3875 | 0.9104 | 0.9133 | 0.9078 | 0.9091 | |
|
| 0.4109 | 10.0 | 40640 | 0.3586 | 0.9180 | 0.9196 | 0.9160 | 0.9168 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.33.3 |
|
- Pytorch 2.0.1+cu117 |
|
- Datasets 2.14.5 |
|
- Tokenizers 0.13.3 |
|
|