Model save
Browse files
README.md
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: facebook/convnextv2-base-22k-384
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
+
- precision
|
9 |
+
- recall
|
10 |
+
- f1
|
11 |
+
model-index:
|
12 |
+
- name: 10-convnextv2-base-22k-384-finetuned-spiderTraining1000-1000
|
13 |
+
results: []
|
14 |
+
---
|
15 |
+
|
16 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
17 |
+
should probably proofread and complete it, then remove this comment. -->
|
18 |
+
|
19 |
+
# 10-convnextv2-base-22k-384-finetuned-spiderTraining1000-1000
|
20 |
+
|
21 |
+
This model is a fine-tuned version of [facebook/convnextv2-base-22k-384](https://huggingface.co/facebook/convnextv2-base-22k-384) on an unknown dataset.
|
22 |
+
It achieves the following results on the evaluation set:
|
23 |
+
- Loss: 0.3586
|
24 |
+
- Accuracy: 0.9180
|
25 |
+
- Precision: 0.9196
|
26 |
+
- Recall: 0.9160
|
27 |
+
- F1: 0.9168
|
28 |
+
|
29 |
+
## Model description
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Intended uses & limitations
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training and evaluation data
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Training procedure
|
42 |
+
|
43 |
+
### Training hyperparameters
|
44 |
+
|
45 |
+
The following hyperparameters were used during training:
|
46 |
+
- learning_rate: 0.0005
|
47 |
+
- train_batch_size: 27
|
48 |
+
- eval_batch_size: 27
|
49 |
+
- seed: 42
|
50 |
+
- distributed_type: multi-GPU
|
51 |
+
- gradient_accumulation_steps: 4
|
52 |
+
- total_train_batch_size: 108
|
53 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
54 |
+
- lr_scheduler_type: linear
|
55 |
+
- lr_scheduler_warmup_ratio: 0.1
|
56 |
+
- num_epochs: 10
|
57 |
+
|
58 |
+
### Training results
|
59 |
+
|
60 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|
61 |
+
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:---------:|:------:|:------:|
|
62 |
+
| 2.0397 | 1.0 | 4064 | 1.4192 | 0.6356 | 0.6956 | 0.6130 | 0.6167 |
|
63 |
+
| 1.3997 | 2.0 | 8129 | 0.9638 | 0.7454 | 0.7708 | 0.7320 | 0.7325 |
|
64 |
+
| 1.1393 | 3.0 | 12193 | 0.7564 | 0.7973 | 0.8102 | 0.7883 | 0.7884 |
|
65 |
+
| 0.9942 | 4.0 | 16258 | 0.6256 | 0.8331 | 0.8464 | 0.8276 | 0.8294 |
|
66 |
+
| 0.8572 | 5.0 | 20322 | 0.5610 | 0.8507 | 0.8632 | 0.8441 | 0.8467 |
|
67 |
+
| 0.6445 | 6.0 | 24387 | 0.4866 | 0.8730 | 0.8802 | 0.8688 | 0.8697 |
|
68 |
+
| 0.5444 | 7.0 | 28451 | 0.4496 | 0.8852 | 0.8909 | 0.8812 | 0.8829 |
|
69 |
+
| 0.4955 | 8.0 | 32516 | 0.4241 | 0.8986 | 0.9039 | 0.8952 | 0.8974 |
|
70 |
+
| 0.448 | 9.0 | 36580 | 0.3875 | 0.9104 | 0.9133 | 0.9078 | 0.9091 |
|
71 |
+
| 0.4109 | 10.0 | 40640 | 0.3586 | 0.9180 | 0.9196 | 0.9160 | 0.9168 |
|
72 |
+
|
73 |
+
|
74 |
+
### Framework versions
|
75 |
+
|
76 |
+
- Transformers 4.33.3
|
77 |
+
- Pytorch 2.0.1+cu117
|
78 |
+
- Datasets 2.14.5
|
79 |
+
- Tokenizers 0.13.3
|