yujiepan's picture
upload model
51f32b9
metadata
license: apache-2.0
tags:
  - image-classification
  - vision
  - generated_from_trainer
datasets:
  - food101
metrics:
  - accuracy
model-index:
  - name: swin-food101-jpqd-1to2r1-epo7-finetuned-student
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: food101
          type: food101
          config: default
          split: validation
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9213069306930693

swin-food101-jpqd-1to2r1-epo7-finetuned-student

This model is a fine-tuned version of skylord/swin-finetuned-food101 on the food101 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1947
  • Accuracy: 0.9213

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 128
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 7.0

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.2342 0.42 500 0.1993 0.9099
0.2891 0.84 1000 0.1912 0.9137
67.4995 1.27 1500 66.4760 0.8035
109.8398 1.69 2000 109.5154 0.4499
0.6337 2.11 2500 0.4865 0.8826
0.6605 2.54 3000 0.3551 0.9013
0.4013 2.96 3500 0.3176 0.9044
0.3949 3.38 4000 0.2839 0.9079
0.4632 3.8 4500 0.2652 0.9118
0.3717 4.23 5000 0.2459 0.9147
0.3308 4.65 5500 0.2439 0.9159
0.4232 5.07 6000 0.2259 0.9169
0.3426 5.49 6500 0.2147 0.9199
0.331 5.92 7000 0.2086 0.9189
0.3032 6.34 7500 0.2036 0.9201
0.3393 6.76 8000 0.1978 0.9204

Framework versions

  • Transformers 4.26.0
  • Pytorch 1.13.1+cu116
  • Datasets 2.8.0
  • Tokenizers 0.13.2