swin-food101-jpqd-1to2r1-epo7-finetuned-student

This model is a fine-tuned version of skylord/swin-finetuned-food101 on the food101 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1947
  • Accuracy: 0.9213

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 128
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 7.0

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.2342 0.42 500 0.1993 0.9099
0.2891 0.84 1000 0.1912 0.9137
67.4995 1.27 1500 66.4760 0.8035
109.8398 1.69 2000 109.5154 0.4499
0.6337 2.11 2500 0.4865 0.8826
0.6605 2.54 3000 0.3551 0.9013
0.4013 2.96 3500 0.3176 0.9044
0.3949 3.38 4000 0.2839 0.9079
0.4632 3.8 4500 0.2652 0.9118
0.3717 4.23 5000 0.2459 0.9147
0.3308 4.65 5500 0.2439 0.9159
0.4232 5.07 6000 0.2259 0.9169
0.3426 5.49 6500 0.2147 0.9199
0.331 5.92 7000 0.2086 0.9189
0.3032 6.34 7500 0.2036 0.9201
0.3393 6.76 8000 0.1978 0.9204

Framework versions

  • Transformers 4.26.0
  • Pytorch 1.13.1+cu116
  • Datasets 2.8.0
  • Tokenizers 0.13.2
Downloads last month
9
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train yujiepan/internal.swin-base-food101-int8-structured30.56

Evaluation results