|
--- |
|
language: |
|
- ga |
|
- en |
|
license: apache-2.0 |
|
base_model: openai/whisper-medium |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- ymoslem/IWSLT2023-GA-EN |
|
- ymoslem/FLEURS-GA-EN |
|
- ymoslem/BitesizeIrish-GA-EN |
|
- ymoslem/SpokenWords-GA-EN-MTed |
|
metrics: |
|
- bleu |
|
- wer |
|
model-index: |
|
- name: Whisper Medium GA-EN Speech Translation |
|
results: |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: IWSLT-2023, FLEURS, BiteSize, SpokenWords, Tatoeba, and Wikimedia |
|
type: ymoslem/IWSLT2023-GA-EN |
|
metrics: |
|
- name: Bleu |
|
type: bleu |
|
value: 32.14 |
|
- name: Wer |
|
type: wer |
|
value: 65.96127870328681 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# Whisper Medium GA-EN Speech Translation |
|
|
|
This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co./openai/whisper-medium) on the IWSLT-2023, FLEURS, BiteSize, SpokenWords, Tatoeba, and Wikimedia dataset. |
|
The best model checkpoint (this version) is at step 1400, epoch 1.84 (4 x 0.46), and it achieves the following results on the evaluation set: |
|
- Loss: 1.0240 |
|
- Bleu: 33.55 |
|
- Chrf: 50.95 |
|
- Wer: 60.1981 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 0.03 |
|
- training_steps: 2000 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Hardware |
|
|
|
4 x A40 48GB VRAM, with batch size 4 per machine (total: 16) |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Bleu | Chrf | Validation Loss | Wer | |
|
|:-------------:|:-----:|:----:|:-----:|:-----:|:---------------:|:--------:| |
|
| 2.9468 | 0.03 | 100 | 4.72 | 20.55 | 2.2829 | 120.6213 | |
|
| 2.5074 | 0.07 | 200 | 7.81 | 25.23 | 2.0136 | 114.8131 | |
|
| 2.2406 | 0.1 | 300 | 11.24 | 29.39 | 1.8224 | 95.9928 | |
|
| 2.2466 | 0.13 | 400 | 16.01 | 34.73 | 1.6530 | 83.4309 | |
|
| 2.0276 | 0.16 | 500 | 16.69 | 34.76 | 1.5344 | 94.2368 | |
|
| 1.8429 | 0.2 | 600 | 21.37 | 37.48 | 1.4923 | 78.5682 | |
|
| 1.7621 | 0.23 | 700 | 23.4 | 40.89 | 1.3666 | 74.3359 | |
|
| 1.5629 | 0.26 | 800 | 24.76 | 44.63 | 1.2876 | 76.6321 | |
|
| 1.5458 | 0.3 | 900 | 25.81 | 44.59 | 1.2178 | 72.6249 | |
|
| 1.2971 | 0.33 | 1000 | 27.63 | 46.91 | 1.1823 | 70.2837 | |
|
| 1.3852 | 0.36 | 1100 | 27.18 | 46.16 | 1.2303 | 70.6889 | |
|
| 1.309 | 0.39 | 1200 | 27.65 | 47.41 | 1.1573 | 72.0396 | |
|
| 1.1818 | 0.43 | 1300 | 31.17 | 48.36 | 1.1304 | 61.6389 | |
|
| 1.2711 | 0.46 | 1400 | 33.55 | 50.95 | 1.0839 | 60.1981 | |
|
| 1.1305 | 0.49 | 1500 | 30.37 | 50.78 | 1.0718 | 68.6628 | |
|
| 1.0544 | 0.53 | 1600 | 26.98 | 48.1 | 1.1109 | 73.7506 | |
|
| 1.125 | 0.56 | 1700 | 30.76 | 50.19 | 1.0709 | 61.7740 | |
|
| 1.1348 | 0.59 | 1800 | 33.71 | 50.6 | 1.0530 | 59.9280 | |
|
| 1.14 | 0.62 | 1900 | 31.45 | 50.16 | 1.0392 | 66.9068 | |
|
| 1.1059 | 0.66 | 2000 | 32.14 | 50.84 | 1.0240 | 65.9613 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.39.3 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.15.2 |
|
|