ymoslem commited on
Commit
9f0b510
·
verified ·
1 Parent(s): 2ed75ad

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +13 -9
README.md CHANGED
@@ -38,11 +38,11 @@ should probably proofread and complete it, then remove this comment. -->
38
  # Whisper Medium GA-EN Speech Translation
39
 
40
  This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the IWSLT-2023, FLEURS, BiteSize, SpokenWords, Tatoeba, and Wikimedia dataset.
41
- It achieves the following results on the evaluation set:
42
  - Loss: 1.0240
43
- - Bleu: 32.14
44
- - Chrf: 50.84
45
- - Wer: 65.9613
46
 
47
  ## Model description
48
 
@@ -71,6 +71,10 @@ The following hyperparameters were used during training:
71
  - training_steps: 2000
72
  - mixed_precision_training: Native AMP
73
 
 
 
 
 
74
  ### Training results
75
 
76
  | Training Loss | Epoch | Step | Bleu | Chrf | Validation Loss | Wer |
@@ -90,11 +94,11 @@ The following hyperparameters were used during training:
90
  | 1.1818 | 0.43 | 1300 | 31.17 | 48.36 | 1.1304 | 61.6389 |
91
  | 1.2711 | 0.46 | 1400 | 33.55 | 50.95 | 1.0839 | 60.1981 |
92
  | 1.1305 | 0.49 | 1500 | 30.37 | 50.78 | 1.0718 | 68.6628 |
93
- | 1.0544 | 0.53 | 1600 | 1.1109| 26.98 | 48.1 | 73.7506 |
94
- | 1.125 | 0.56 | 1700 | 1.0709| 30.76 | 50.19 | 61.7740 |
95
- | 1.1348 | 0.59 | 1800 | 1.0530| 33.71 | 50.6 | 59.9280 |
96
- | 1.14 | 0.62 | 1900 | 1.0392| 31.45 | 50.16 | 66.9068 |
97
- | 1.1059 | 0.66 | 2000 | 1.0240| 32.14 | 50.84 | 65.9613 |
98
 
99
 
100
  ### Framework versions
 
38
  # Whisper Medium GA-EN Speech Translation
39
 
40
  This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the IWSLT-2023, FLEURS, BiteSize, SpokenWords, Tatoeba, and Wikimedia dataset.
41
+ The best model checkpoint (this version) is at step 1400, epoch 1.84 (4 x 0.46), and it achieves the following results on the evaluation set:
42
  - Loss: 1.0240
43
+ - Bleu: 33.55
44
+ - Chrf: 50.95
45
+ - Wer: 60.1981
46
 
47
  ## Model description
48
 
 
71
  - training_steps: 2000
72
  - mixed_precision_training: Native AMP
73
 
74
+ ### Hardware
75
+
76
+ 4 x A40 48GB VRAM, with batch size 4 per machine (total: 16)
77
+
78
  ### Training results
79
 
80
  | Training Loss | Epoch | Step | Bleu | Chrf | Validation Loss | Wer |
 
94
  | 1.1818 | 0.43 | 1300 | 31.17 | 48.36 | 1.1304 | 61.6389 |
95
  | 1.2711 | 0.46 | 1400 | 33.55 | 50.95 | 1.0839 | 60.1981 |
96
  | 1.1305 | 0.49 | 1500 | 30.37 | 50.78 | 1.0718 | 68.6628 |
97
+ | 1.0544 | 0.53 | 1600 | 26.98 | 48.1 | 1.1109 | 73.7506 |
98
+ | 1.125 | 0.56 | 1700 | 30.76 | 50.19 | 1.0709 | 61.7740 |
99
+ | 1.1348 | 0.59 | 1800 | 33.71 | 50.6 | 1.0530 | 59.9280 |
100
+ | 1.14 | 0.62 | 1900 | 31.45 | 50.16 | 1.0392 | 66.9068 |
101
+ | 1.1059 | 0.66 | 2000 | 32.14 | 50.84 | 1.0240 | 65.9613 |
102
 
103
 
104
  ### Framework versions