|
--- |
|
base_model: meta-llama/Llama-2-7b-chat-hf |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: lora-llama-2-7b-nsmc-review-understanding |
|
results: [] |
|
datasets: |
|
- nsmc |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# lora-llama-2-7b-nsmc-review-understanding |
|
|
|
This model is a fine-tuned version of [meta-llama/Llama-2-7b-chat-hf](https://huggingface.co./meta-llama/Llama-2-7b-chat-hf) on an unknown dataset. |
|
|
|
## Model description |
|
|
|
nsmc data ๊ธฐ๋ฐ ๋ฏธ์ธํ๋ ๋ชจ๋ธ |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
training data๋ก nsmc train data ์์ชฝ 2000๊ฐ, evaluation data๋ก nsmc test data ์์ชฝ 1000๊ฐ๋ฅผ ์ฌ์ฉํ์ต๋๋ค. |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 1 |
|
- eval_batch_size: 1 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 2 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_ratio: 0.03 |
|
- training_steps: 200 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
์ด 200step ๋๋ ธ์ต๋๋ค. 50step๋ง๋ค checkํ ๊ฒฐ๊ณผ๋ ์๋์ ๊ฐ์ต๋๋ค. |
|
50 step training loss: 1.2201 |
|
100 step training loss: 0.8892 |
|
150 step training loss: 0.8449 |
|
200 step training loss: 0.8370 |
|
|
|
## ์คํ ๋ด์ฉ ๋ฐ ๋ถ๋ฅ ๊ฒฐ๊ณผ |
|
|
|
๋ฏธ์ธํ๋ํ ๋ชจ๋ธ์ nsmc test data 1000๊ฐ๋ฅผ ์
๋ ฅ์ผ๋ก ์ฃผ์ด ๊ธ์ ๋๋ ๋ถ์ ๋จ์ด๋ฅผ ์์ฑํ๋๋ก ํ์ต๋๋ค. |
|
๋จ์ด ์์ฑ ๊ฒฐ๊ณผ๋ '๊ธ์ ' 443๊ฐ, '๋ถ์ ' 556๊ฐ, '๋ถ์ฐ์ 2015๋
12์ 17์ผ ๊ฐ๋ดํ์ต๋๋ค. ###Midm;๋ถ์ ' 1๊ฐ ์
๋๋ค. |
|
์ ํ๋๋ ์ ๋ต์ / 1000 * 100์ผ๋ก ๊ณ์ฐํ์ผ๋ฉฐ, ๊ฒฐ๊ณผ๋ 84.90% ์
๋๋ค. |
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.2 |
|
- Pytorch 2.1.0+cu118 |
|
- Datasets 2.15.0 |
|
- Tokenizers 0.15.0 |