File size: 2,009 Bytes
2df5fe6 89b2762 2df5fe6 89b2762 2df5fe6 89b2762 2df5fe6 89b2762 2df5fe6 b5cb1af 89b2762 2df5fe6 89b2762 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 |
---
base_model: meta-llama/Llama-2-7b-chat-hf
tags:
- generated_from_trainer
model-index:
- name: lora-llama-2-7b-nsmc-review-understanding
results: []
datasets:
- nsmc
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# lora-llama-2-7b-nsmc-review-understanding
This model is a fine-tuned version of [meta-llama/Llama-2-7b-chat-hf](https://huggingface.co./meta-llama/Llama-2-7b-chat-hf) on an unknown dataset.
## Model description
nsmc data ๊ธฐ๋ฐ ๋ฏธ์ธํ๋ ๋ชจ๋ธ
## Intended uses & limitations
More information needed
## Training and evaluation data
training data๋ก nsmc train data ์์ชฝ 2000๊ฐ, evaluation data๋ก nsmc test data ์์ชฝ 1000๊ฐ๋ฅผ ์ฌ์ฉํ์ต๋๋ค.
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 2
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.03
- training_steps: 200
- mixed_precision_training: Native AMP
### Training results
์ด 200step ๋๋ ธ์ต๋๋ค. 50step๋ง๋ค checkํ ๊ฒฐ๊ณผ๋ ์๋์ ๊ฐ์ต๋๋ค.
50 step training loss: 1.2201
100 step training loss: 0.8892
150 step training loss: 0.8449
200 step training loss: 0.8370
## ์คํ ๋ด์ฉ ๋ฐ ๋ถ๋ฅ ๊ฒฐ๊ณผ
๋ฏธ์ธํ๋ํ ๋ชจ๋ธ์ nsmc test data 1000๊ฐ๋ฅผ ์
๋ ฅ์ผ๋ก ์ฃผ์ด ๊ธ์ ๋๋ ๋ถ์ ๋จ์ด๋ฅผ ์์ฑํ๋๋ก ํ์ต๋๋ค.
๋จ์ด ์์ฑ ๊ฒฐ๊ณผ๋ '๊ธ์ ' 443๊ฐ, '๋ถ์ ' 556๊ฐ, '๋ถ์ฐ์ 2015๋
12์ 17์ผ ๊ฐ๋ดํ์ต๋๋ค. ###Midm;๋ถ์ ' 1๊ฐ ์
๋๋ค.
์ ํ๋๋ ์ ๋ต์ / 1000 * 100์ผ๋ก ๊ณ์ฐํ์ผ๋ฉฐ, ๊ฒฐ๊ณผ๋ 84.90% ์
๋๋ค.
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0 |