xlm-roberta-large-vieille-france-v2
This model is a fine-tuned version of xaviergillard/xlm-roberta-large-vieille-france on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0960
- Precision: 0.7626
- Recall: 0.8061
- F1: 0.7838
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 15
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 |
---|---|---|---|---|---|---|
No log | 1.0 | 54 | 0.0609 | 0.7207 | 0.7966 | 0.7568 |
No log | 2.0 | 108 | 0.0541 | 0.7140 | 0.8054 | 0.7570 |
No log | 3.0 | 162 | 0.0585 | 0.7595 | 0.8083 | 0.7831 |
No log | 4.0 | 216 | 0.0592 | 0.7384 | 0.8361 | 0.7842 |
No log | 5.0 | 270 | 0.0684 | 0.7379 | 0.7827 | 0.7597 |
No log | 6.0 | 324 | 0.0649 | 0.7568 | 0.8193 | 0.7868 |
No log | 7.0 | 378 | 0.0668 | 0.7585 | 0.8113 | 0.7840 |
No log | 8.0 | 432 | 0.0825 | 0.7094 | 0.8142 | 0.7582 |
No log | 9.0 | 486 | 0.0767 | 0.7653 | 0.8252 | 0.7941 |
0.0406 | 10.0 | 540 | 0.0841 | 0.7621 | 0.8040 | 0.7825 |
0.0406 | 11.0 | 594 | 0.0850 | 0.7678 | 0.8032 | 0.7851 |
0.0406 | 12.0 | 648 | 0.0880 | 0.7579 | 0.7944 | 0.7757 |
0.0406 | 13.0 | 702 | 0.0914 | 0.7619 | 0.8054 | 0.7831 |
0.0406 | 14.0 | 756 | 0.0950 | 0.7613 | 0.8003 | 0.7803 |
0.0406 | 15.0 | 810 | 0.0960 | 0.7626 | 0.8061 | 0.7838 |
Framework versions
- Transformers 4.48.3
- Pytorch 2.1.2
- Datasets 3.3.0
- Tokenizers 0.21.0
- Downloads last month
- 45
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for xaviergillard/xlm-roberta-large-vieille-france-v2
Unable to build the model tree, the base model loops to the model itself. Learn more.