xlm-roberta-large-vieille-france-v2

This model is a fine-tuned version of xaviergillard/xlm-roberta-large-vieille-france on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0960
  • Precision: 0.7626
  • Recall: 0.8061
  • F1: 0.7838

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1
No log 1.0 54 0.0609 0.7207 0.7966 0.7568
No log 2.0 108 0.0541 0.7140 0.8054 0.7570
No log 3.0 162 0.0585 0.7595 0.8083 0.7831
No log 4.0 216 0.0592 0.7384 0.8361 0.7842
No log 5.0 270 0.0684 0.7379 0.7827 0.7597
No log 6.0 324 0.0649 0.7568 0.8193 0.7868
No log 7.0 378 0.0668 0.7585 0.8113 0.7840
No log 8.0 432 0.0825 0.7094 0.8142 0.7582
No log 9.0 486 0.0767 0.7653 0.8252 0.7941
0.0406 10.0 540 0.0841 0.7621 0.8040 0.7825
0.0406 11.0 594 0.0850 0.7678 0.8032 0.7851
0.0406 12.0 648 0.0880 0.7579 0.7944 0.7757
0.0406 13.0 702 0.0914 0.7619 0.8054 0.7831
0.0406 14.0 756 0.0950 0.7613 0.8003 0.7803
0.0406 15.0 810 0.0960 0.7626 0.8061 0.7838

Framework versions

  • Transformers 4.48.3
  • Pytorch 2.1.2
  • Datasets 3.3.0
  • Tokenizers 0.21.0
Downloads last month
45
Safetensors
Model size
559M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for xaviergillard/xlm-roberta-large-vieille-france-v2

Unable to build the model tree, the base model loops to the model itself. Learn more.