xlm-roberta-large-vieille-france
This model is a fine-tuned version of xaviergillard/xlm-roberta-large-vieille-france on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0099
- Precision: 0.9885
- Recall: 0.9919
- F1: 0.9902
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 15
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 |
---|---|---|---|---|---|---|
No log | 1.0 | 32 | 0.0061 | 0.9862 | 0.9919 | 0.9891 |
No log | 2.0 | 64 | 0.0102 | 0.9863 | 0.9931 | 0.9897 |
No log | 3.0 | 96 | 0.0128 | 0.9795 | 0.9908 | 0.9851 |
No log | 4.0 | 128 | 0.0106 | 0.9784 | 0.9931 | 0.9857 |
No log | 5.0 | 160 | 0.0120 | 0.9873 | 0.9896 | 0.9885 |
No log | 6.0 | 192 | 0.0134 | 0.9817 | 0.9908 | 0.9862 |
No log | 7.0 | 224 | 0.0097 | 0.9817 | 0.9908 | 0.9862 |
No log | 8.0 | 256 | 0.0084 | 0.9840 | 0.9942 | 0.9891 |
No log | 9.0 | 288 | 0.0077 | 0.9885 | 0.9931 | 0.9908 |
No log | 10.0 | 320 | 0.0101 | 0.9851 | 0.9908 | 0.9879 |
No log | 11.0 | 352 | 0.0102 | 0.9851 | 0.9919 | 0.9885 |
No log | 12.0 | 384 | 0.0105 | 0.9862 | 0.9919 | 0.9891 |
No log | 13.0 | 416 | 0.0102 | 0.9885 | 0.9919 | 0.9902 |
No log | 14.0 | 448 | 0.0098 | 0.9885 | 0.9919 | 0.9902 |
No log | 15.0 | 480 | 0.0099 | 0.9885 | 0.9919 | 0.9902 |
Framework versions
- Transformers 4.48.3
- Pytorch 2.1.2
- Datasets 3.3.0
- Tokenizers 0.21.0
- Downloads last month
- 212
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for xaviergillard/xlm-roberta-large-vieille-france
Unable to build the model tree, the base model loops to the model itself. Learn more.