xlm-roberta-large-vieille-france

This model is a fine-tuned version of xaviergillard/xlm-roberta-large-vieille-france on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0099
  • Precision: 0.9885
  • Recall: 0.9919
  • F1: 0.9902

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1
No log 1.0 32 0.0061 0.9862 0.9919 0.9891
No log 2.0 64 0.0102 0.9863 0.9931 0.9897
No log 3.0 96 0.0128 0.9795 0.9908 0.9851
No log 4.0 128 0.0106 0.9784 0.9931 0.9857
No log 5.0 160 0.0120 0.9873 0.9896 0.9885
No log 6.0 192 0.0134 0.9817 0.9908 0.9862
No log 7.0 224 0.0097 0.9817 0.9908 0.9862
No log 8.0 256 0.0084 0.9840 0.9942 0.9891
No log 9.0 288 0.0077 0.9885 0.9931 0.9908
No log 10.0 320 0.0101 0.9851 0.9908 0.9879
No log 11.0 352 0.0102 0.9851 0.9919 0.9885
No log 12.0 384 0.0105 0.9862 0.9919 0.9891
No log 13.0 416 0.0102 0.9885 0.9919 0.9902
No log 14.0 448 0.0098 0.9885 0.9919 0.9902
No log 15.0 480 0.0099 0.9885 0.9919 0.9902

Framework versions

  • Transformers 4.48.3
  • Pytorch 2.1.2
  • Datasets 3.3.0
  • Tokenizers 0.21.0
Downloads last month
212
Safetensors
Model size
559M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for xaviergillard/xlm-roberta-large-vieille-france

Unable to build the model tree, the base model loops to the model itself. Learn more.