|
--- |
|
license: apache-2.0 |
|
base_model: microsoft/swin-tiny-patch4-window7-224 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- imagefolder |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: swin-tiny-patch4-window7-224-finetuned-plant-classification |
|
results: |
|
- task: |
|
name: Image Classification |
|
type: image-classification |
|
dataset: |
|
name: imagefolder |
|
type: imagefolder |
|
config: default |
|
split: train |
|
args: default |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.7557471264367817 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# swin-tiny-patch4-window7-224-finetuned-plant-classification |
|
|
|
This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co./microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.6592 |
|
- Accuracy: 0.7557 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 128 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 20 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:| |
|
| 0.8257 | 1.0 | 268 | 0.7941 | 0.6695 | |
|
| 0.7235 | 2.0 | 537 | 0.7696 | 0.6695 | |
|
| 0.6939 | 3.0 | 806 | 0.7428 | 0.6724 | |
|
| 0.665 | 4.0 | 1075 | 0.6884 | 0.7328 | |
|
| 0.6846 | 5.0 | 1343 | 0.7144 | 0.6954 | |
|
| 0.6391 | 6.0 | 1612 | 0.6854 | 0.7155 | |
|
| 0.6172 | 7.0 | 1881 | 0.6698 | 0.7011 | |
|
| 0.6332 | 8.0 | 2150 | 0.6510 | 0.7126 | |
|
| 0.5679 | 9.0 | 2418 | 0.6323 | 0.7299 | |
|
| 0.5109 | 10.0 | 2687 | 0.6629 | 0.7098 | |
|
| 0.5594 | 11.0 | 2956 | 0.6556 | 0.7270 | |
|
| 0.4874 | 12.0 | 3225 | 0.6627 | 0.7155 | |
|
| 0.4687 | 13.0 | 3493 | 0.6645 | 0.7299 | |
|
| 0.4686 | 14.0 | 3762 | 0.6469 | 0.7213 | |
|
| 0.4862 | 15.0 | 4031 | 0.6602 | 0.7356 | |
|
| 0.4432 | 16.0 | 4300 | 0.6550 | 0.7270 | |
|
| 0.4368 | 17.0 | 4568 | 0.6472 | 0.7385 | |
|
| 0.3815 | 18.0 | 4837 | 0.6557 | 0.7557 | |
|
| 0.3674 | 19.0 | 5106 | 0.6638 | 0.7529 | |
|
| 0.4224 | 19.94 | 5360 | 0.6592 | 0.7557 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.2 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.16.1 |
|
- Tokenizers 0.15.1 |
|
|