weightbot's picture
Model save
7797abf verified
metadata
license: apache-2.0
base_model: microsoft/swin-tiny-patch4-window7-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: swin-tiny-patch4-window7-224-finetuned-plant-classification
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.7557471264367817

swin-tiny-patch4-window7-224-finetuned-plant-classification

This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6592
  • Accuracy: 0.7557

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.8257 1.0 268 0.7941 0.6695
0.7235 2.0 537 0.7696 0.6695
0.6939 3.0 806 0.7428 0.6724
0.665 4.0 1075 0.6884 0.7328
0.6846 5.0 1343 0.7144 0.6954
0.6391 6.0 1612 0.6854 0.7155
0.6172 7.0 1881 0.6698 0.7011
0.6332 8.0 2150 0.6510 0.7126
0.5679 9.0 2418 0.6323 0.7299
0.5109 10.0 2687 0.6629 0.7098
0.5594 11.0 2956 0.6556 0.7270
0.4874 12.0 3225 0.6627 0.7155
0.4687 13.0 3493 0.6645 0.7299
0.4686 14.0 3762 0.6469 0.7213
0.4862 15.0 4031 0.6602 0.7356
0.4432 16.0 4300 0.6550 0.7270
0.4368 17.0 4568 0.6472 0.7385
0.3815 18.0 4837 0.6557 0.7557
0.3674 19.0 5106 0.6638 0.7529
0.4224 19.94 5360 0.6592 0.7557

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.1