w05230505's picture
End of training
787f739 verified
---
library_name: transformers
language:
- en
license: apache-2.0
base_model: bert-base-uncased
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
- f1
model-index:
- name: bert-base-cased-finetuned-qqp
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: GLUE QQP
type: glue
args: qqp
metrics:
- name: Accuracy
type: accuracy
value: 0.9108830076675736
- name: F1
type: f1
value: 0.8798719701263629
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-base-cased-finetuned-qqp
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co./bert-base-uncased) on the GLUE QQP dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3636
- Accuracy: 0.9109
- F1: 0.8799
- Combined Score: 0.8954
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Accuracy | Combined Score | F1 | Validation Loss |
|:-------------:|:-----:|:-----:|:--------:|:--------------:|:------:|:---------------:|
| 0.2942 | 1.0 | 22741 | 0.9009 | 0.8845 | 0.8681 | 0.2476 |
| 0.1919 | 2.0 | 45482 | 0.9080 | 0.8920 | 0.8761 | 0.2706 |
| 0.1342 | 3.0 | 68223 | 0.9109 | 0.8957 | 0.8805 | 0.3568 |
### Framework versions
- Transformers 4.45.0.dev0
- Pytorch 2.3.0+cu121
- Datasets 2.18.0
- Tokenizers 0.19.1