Edit model card

bert-base-cased-finetuned-qqp

This model is a fine-tuned version of bert-base-uncased on the GLUE QQP dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3636
  • Accuracy: 0.9109
  • F1: 0.8799
  • Combined Score: 0.8954

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3.0

Training results

Training Loss Epoch Step Accuracy Combined Score F1 Validation Loss
0.2942 1.0 22741 0.9009 0.8845 0.8681 0.2476
0.1919 2.0 45482 0.9080 0.8920 0.8761 0.2706
0.1342 3.0 68223 0.9109 0.8957 0.8805 0.3568

Framework versions

  • Transformers 4.45.0.dev0
  • Pytorch 2.3.0+cu121
  • Datasets 2.18.0
  • Tokenizers 0.19.1
Downloads last month
13
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for w05230505/bert-base-cased-finetuned-qqp

Finetuned
(2076)
this model

Dataset used to train w05230505/bert-base-cased-finetuned-qqp

Evaluation results