vishalkatheriya18's picture
End of training
fd175d8 verified
metadata
license: apache-2.0
base_model: facebook/convnextv2-tiny-1k-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: convnextv2-tiny-1k-224-finetuned-topwear
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8388888888888889

convnextv2-tiny-1k-224-finetuned-topwear

This model is a fine-tuned version of facebook/convnextv2-tiny-1k-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6478
  • Accuracy: 0.8389

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 120

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.7006 0.9412 12 2.6782 0.1167
2.6863 1.9608 25 2.6272 0.1611
2.6437 2.9804 38 2.5389 0.2889
2.4851 4.0 51 2.4116 0.4111
2.3732 4.9412 63 2.2707 0.4889
2.2546 5.9608 76 2.0710 0.5722
2.1023 6.9804 89 1.8371 0.6167
1.7115 8.0 102 1.6161 0.6111
1.5295 8.9412 114 1.4381 0.6278
1.3366 9.9608 127 1.2540 0.65
1.0556 10.9804 140 1.1632 0.6611
0.9657 12.0 153 1.0600 0.7
0.8703 12.9412 165 0.9983 0.7222
0.8007 13.9608 178 0.9474 0.7278
0.6398 14.9804 191 0.8634 0.75
0.6023 16.0 204 0.8527 0.7278
0.583 16.9412 216 0.7928 0.7667
0.5279 17.9608 229 0.7897 0.7833
0.4643 18.9804 242 0.7886 0.7667
0.4296 20.0 255 0.7329 0.7833
0.41 20.9412 267 0.7317 0.7611
0.3674 21.9608 280 0.7171 0.7667
0.3285 22.9804 293 0.7005 0.7833
0.2978 24.0 306 0.6576 0.7889
0.293 24.9412 318 0.6450 0.8
0.2724 25.9608 331 0.6765 0.7889
0.2494 26.9804 344 0.6826 0.8056
0.2504 28.0 357 0.6710 0.8056
0.2332 28.9412 369 0.6667 0.7778
0.2012 29.9608 382 0.7399 0.7944
0.1866 30.9804 395 0.7311 0.7833
0.2031 32.0 408 0.7077 0.7944
0.1969 32.9412 420 0.7769 0.7667
0.1968 33.9608 433 0.7666 0.7833
0.1712 34.9804 446 0.6796 0.8
0.1813 36.0 459 0.6654 0.8111
0.1678 36.9412 471 0.6851 0.7889
0.1461 37.9608 484 0.7054 0.7833
0.1244 38.9804 497 0.7013 0.8056
0.1329 40.0 510 0.6785 0.8
0.1186 40.9412 522 0.7500 0.7778
0.1397 41.9608 535 0.6819 0.8167
0.1324 42.9804 548 0.6257 0.8111
0.111 44.0 561 0.5939 0.8278
0.1228 44.9412 573 0.6379 0.8222
0.1085 45.9608 586 0.6789 0.8222
0.1234 46.9804 599 0.6241 0.8278
0.1129 48.0 612 0.7503 0.7889
0.1197 48.9412 624 0.6862 0.7944
0.0898 49.9608 637 0.6764 0.7889
0.1057 50.9804 650 0.6339 0.8167
0.0893 52.0 663 0.5828 0.85
0.0736 52.9412 675 0.6573 0.8111
0.0752 53.9608 688 0.6806 0.7944
0.1127 54.9804 701 0.6222 0.8111
0.1126 56.0 714 0.6305 0.8167
0.0874 56.9412 726 0.6593 0.8111
0.0806 57.9608 739 0.7006 0.8167
0.0978 58.9804 752 0.6680 0.8056
0.0875 60.0 765 0.6739 0.8167
0.0722 60.9412 777 0.6341 0.8333
0.0942 61.9608 790 0.6428 0.8
0.0957 62.9804 803 0.6758 0.8
0.0814 64.0 816 0.6104 0.8167
0.077 64.9412 828 0.6226 0.8111
0.1004 65.9608 841 0.6899 0.8056
0.0697 66.9804 854 0.7105 0.8167
0.0754 68.0 867 0.6751 0.8111
0.0842 68.9412 879 0.6912 0.7833
0.0684 69.9608 892 0.7235 0.8167
0.0684 70.9804 905 0.5840 0.8278
0.0705 72.0 918 0.6636 0.8222
0.0681 72.9412 930 0.6787 0.8
0.0906 73.9608 943 0.6243 0.8389
0.0453 74.9804 956 0.6787 0.8222
0.0874 76.0 969 0.6259 0.8278
0.051 76.9412 981 0.6590 0.8278
0.0858 77.9608 994 0.6307 0.8278
0.0601 78.9804 1007 0.6042 0.8444
0.0601 80.0 1020 0.5875 0.8389
0.067 80.9412 1032 0.6078 0.8389
0.0556 81.9608 1045 0.6007 0.8444
0.0661 82.9804 1058 0.6062 0.8333
0.0651 84.0 1071 0.6387 0.8111
0.0546 84.9412 1083 0.6861 0.8167
0.0827 85.9608 1096 0.6073 0.8389
0.052 86.9804 1109 0.5935 0.85
0.0524 88.0 1122 0.5899 0.8389
0.066 88.9412 1134 0.5954 0.8444
0.0617 89.9608 1147 0.6145 0.8444
0.0572 90.9804 1160 0.6176 0.8444
0.0719 92.0 1173 0.6406 0.8278
0.0734 92.9412 1185 0.6485 0.8333
0.0616 93.9608 1198 0.6198 0.8333
0.0557 94.9804 1211 0.6167 0.8389
0.0494 96.0 1224 0.6480 0.8444
0.0587 96.9412 1236 0.6076 0.85
0.052 97.9608 1249 0.6512 0.8389
0.0383 98.9804 1262 0.6782 0.8333
0.0499 100.0 1275 0.6542 0.8278
0.0511 100.9412 1287 0.6795 0.8389
0.0452 101.9608 1300 0.6740 0.8333
0.0475 102.9804 1313 0.6616 0.8389
0.0455 104.0 1326 0.6490 0.8278
0.0486 104.9412 1338 0.6331 0.8333
0.0585 105.9608 1351 0.6299 0.8333
0.0549 106.9804 1364 0.6398 0.8278
0.0436 108.0 1377 0.6338 0.8444
0.0429 108.9412 1389 0.6459 0.8389
0.0449 109.9608 1402 0.6470 0.8444
0.0559 110.9804 1415 0.6463 0.8389
0.0378 112.0 1428 0.6480 0.8389
0.0476 112.9412 1440 0.6478 0.8389

Framework versions

  • Transformers 4.44.0
  • Pytorch 2.4.0
  • Datasets 2.21.0
  • Tokenizers 0.19.1