vishalkatheriya18
commited on
End of training
Browse files- README.md +190 -0
- all_results.json +13 -0
- config.json +77 -0
- eval_results.json +8 -0
- model.safetensors +3 -0
- preprocessor_config.json +22 -0
- train_results.json +8 -0
- trainer_state.json +2067 -0
- training_args.bin +3 -0
README.md
ADDED
@@ -0,0 +1,190 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: facebook/convnextv2-tiny-1k-224
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- imagefolder
|
8 |
+
metrics:
|
9 |
+
- accuracy
|
10 |
+
model-index:
|
11 |
+
- name: convnextv2-tiny-1k-224-finetuned-topwear
|
12 |
+
results:
|
13 |
+
- task:
|
14 |
+
name: Image Classification
|
15 |
+
type: image-classification
|
16 |
+
dataset:
|
17 |
+
name: imagefolder
|
18 |
+
type: imagefolder
|
19 |
+
config: default
|
20 |
+
split: train
|
21 |
+
args: default
|
22 |
+
metrics:
|
23 |
+
- name: Accuracy
|
24 |
+
type: accuracy
|
25 |
+
value: 0.8388888888888889
|
26 |
+
---
|
27 |
+
|
28 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
29 |
+
should probably proofread and complete it, then remove this comment. -->
|
30 |
+
|
31 |
+
# convnextv2-tiny-1k-224-finetuned-topwear
|
32 |
+
|
33 |
+
This model is a fine-tuned version of [facebook/convnextv2-tiny-1k-224](https://huggingface.co/facebook/convnextv2-tiny-1k-224) on the imagefolder dataset.
|
34 |
+
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 0.6478
|
36 |
+
- Accuracy: 0.8389
|
37 |
+
|
38 |
+
## Model description
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Intended uses & limitations
|
43 |
+
|
44 |
+
More information needed
|
45 |
+
|
46 |
+
## Training and evaluation data
|
47 |
+
|
48 |
+
More information needed
|
49 |
+
|
50 |
+
## Training procedure
|
51 |
+
|
52 |
+
### Training hyperparameters
|
53 |
+
|
54 |
+
The following hyperparameters were used during training:
|
55 |
+
- learning_rate: 5e-05
|
56 |
+
- train_batch_size: 32
|
57 |
+
- eval_batch_size: 32
|
58 |
+
- seed: 42
|
59 |
+
- gradient_accumulation_steps: 4
|
60 |
+
- total_train_batch_size: 128
|
61 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
62 |
+
- lr_scheduler_type: linear
|
63 |
+
- lr_scheduler_warmup_ratio: 0.1
|
64 |
+
- num_epochs: 120
|
65 |
+
|
66 |
+
### Training results
|
67 |
+
|
68 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
69 |
+
|:-------------:|:--------:|:----:|:---------------:|:--------:|
|
70 |
+
| 2.7006 | 0.9412 | 12 | 2.6782 | 0.1167 |
|
71 |
+
| 2.6863 | 1.9608 | 25 | 2.6272 | 0.1611 |
|
72 |
+
| 2.6437 | 2.9804 | 38 | 2.5389 | 0.2889 |
|
73 |
+
| 2.4851 | 4.0 | 51 | 2.4116 | 0.4111 |
|
74 |
+
| 2.3732 | 4.9412 | 63 | 2.2707 | 0.4889 |
|
75 |
+
| 2.2546 | 5.9608 | 76 | 2.0710 | 0.5722 |
|
76 |
+
| 2.1023 | 6.9804 | 89 | 1.8371 | 0.6167 |
|
77 |
+
| 1.7115 | 8.0 | 102 | 1.6161 | 0.6111 |
|
78 |
+
| 1.5295 | 8.9412 | 114 | 1.4381 | 0.6278 |
|
79 |
+
| 1.3366 | 9.9608 | 127 | 1.2540 | 0.65 |
|
80 |
+
| 1.0556 | 10.9804 | 140 | 1.1632 | 0.6611 |
|
81 |
+
| 0.9657 | 12.0 | 153 | 1.0600 | 0.7 |
|
82 |
+
| 0.8703 | 12.9412 | 165 | 0.9983 | 0.7222 |
|
83 |
+
| 0.8007 | 13.9608 | 178 | 0.9474 | 0.7278 |
|
84 |
+
| 0.6398 | 14.9804 | 191 | 0.8634 | 0.75 |
|
85 |
+
| 0.6023 | 16.0 | 204 | 0.8527 | 0.7278 |
|
86 |
+
| 0.583 | 16.9412 | 216 | 0.7928 | 0.7667 |
|
87 |
+
| 0.5279 | 17.9608 | 229 | 0.7897 | 0.7833 |
|
88 |
+
| 0.4643 | 18.9804 | 242 | 0.7886 | 0.7667 |
|
89 |
+
| 0.4296 | 20.0 | 255 | 0.7329 | 0.7833 |
|
90 |
+
| 0.41 | 20.9412 | 267 | 0.7317 | 0.7611 |
|
91 |
+
| 0.3674 | 21.9608 | 280 | 0.7171 | 0.7667 |
|
92 |
+
| 0.3285 | 22.9804 | 293 | 0.7005 | 0.7833 |
|
93 |
+
| 0.2978 | 24.0 | 306 | 0.6576 | 0.7889 |
|
94 |
+
| 0.293 | 24.9412 | 318 | 0.6450 | 0.8 |
|
95 |
+
| 0.2724 | 25.9608 | 331 | 0.6765 | 0.7889 |
|
96 |
+
| 0.2494 | 26.9804 | 344 | 0.6826 | 0.8056 |
|
97 |
+
| 0.2504 | 28.0 | 357 | 0.6710 | 0.8056 |
|
98 |
+
| 0.2332 | 28.9412 | 369 | 0.6667 | 0.7778 |
|
99 |
+
| 0.2012 | 29.9608 | 382 | 0.7399 | 0.7944 |
|
100 |
+
| 0.1866 | 30.9804 | 395 | 0.7311 | 0.7833 |
|
101 |
+
| 0.2031 | 32.0 | 408 | 0.7077 | 0.7944 |
|
102 |
+
| 0.1969 | 32.9412 | 420 | 0.7769 | 0.7667 |
|
103 |
+
| 0.1968 | 33.9608 | 433 | 0.7666 | 0.7833 |
|
104 |
+
| 0.1712 | 34.9804 | 446 | 0.6796 | 0.8 |
|
105 |
+
| 0.1813 | 36.0 | 459 | 0.6654 | 0.8111 |
|
106 |
+
| 0.1678 | 36.9412 | 471 | 0.6851 | 0.7889 |
|
107 |
+
| 0.1461 | 37.9608 | 484 | 0.7054 | 0.7833 |
|
108 |
+
| 0.1244 | 38.9804 | 497 | 0.7013 | 0.8056 |
|
109 |
+
| 0.1329 | 40.0 | 510 | 0.6785 | 0.8 |
|
110 |
+
| 0.1186 | 40.9412 | 522 | 0.7500 | 0.7778 |
|
111 |
+
| 0.1397 | 41.9608 | 535 | 0.6819 | 0.8167 |
|
112 |
+
| 0.1324 | 42.9804 | 548 | 0.6257 | 0.8111 |
|
113 |
+
| 0.111 | 44.0 | 561 | 0.5939 | 0.8278 |
|
114 |
+
| 0.1228 | 44.9412 | 573 | 0.6379 | 0.8222 |
|
115 |
+
| 0.1085 | 45.9608 | 586 | 0.6789 | 0.8222 |
|
116 |
+
| 0.1234 | 46.9804 | 599 | 0.6241 | 0.8278 |
|
117 |
+
| 0.1129 | 48.0 | 612 | 0.7503 | 0.7889 |
|
118 |
+
| 0.1197 | 48.9412 | 624 | 0.6862 | 0.7944 |
|
119 |
+
| 0.0898 | 49.9608 | 637 | 0.6764 | 0.7889 |
|
120 |
+
| 0.1057 | 50.9804 | 650 | 0.6339 | 0.8167 |
|
121 |
+
| 0.0893 | 52.0 | 663 | 0.5828 | 0.85 |
|
122 |
+
| 0.0736 | 52.9412 | 675 | 0.6573 | 0.8111 |
|
123 |
+
| 0.0752 | 53.9608 | 688 | 0.6806 | 0.7944 |
|
124 |
+
| 0.1127 | 54.9804 | 701 | 0.6222 | 0.8111 |
|
125 |
+
| 0.1126 | 56.0 | 714 | 0.6305 | 0.8167 |
|
126 |
+
| 0.0874 | 56.9412 | 726 | 0.6593 | 0.8111 |
|
127 |
+
| 0.0806 | 57.9608 | 739 | 0.7006 | 0.8167 |
|
128 |
+
| 0.0978 | 58.9804 | 752 | 0.6680 | 0.8056 |
|
129 |
+
| 0.0875 | 60.0 | 765 | 0.6739 | 0.8167 |
|
130 |
+
| 0.0722 | 60.9412 | 777 | 0.6341 | 0.8333 |
|
131 |
+
| 0.0942 | 61.9608 | 790 | 0.6428 | 0.8 |
|
132 |
+
| 0.0957 | 62.9804 | 803 | 0.6758 | 0.8 |
|
133 |
+
| 0.0814 | 64.0 | 816 | 0.6104 | 0.8167 |
|
134 |
+
| 0.077 | 64.9412 | 828 | 0.6226 | 0.8111 |
|
135 |
+
| 0.1004 | 65.9608 | 841 | 0.6899 | 0.8056 |
|
136 |
+
| 0.0697 | 66.9804 | 854 | 0.7105 | 0.8167 |
|
137 |
+
| 0.0754 | 68.0 | 867 | 0.6751 | 0.8111 |
|
138 |
+
| 0.0842 | 68.9412 | 879 | 0.6912 | 0.7833 |
|
139 |
+
| 0.0684 | 69.9608 | 892 | 0.7235 | 0.8167 |
|
140 |
+
| 0.0684 | 70.9804 | 905 | 0.5840 | 0.8278 |
|
141 |
+
| 0.0705 | 72.0 | 918 | 0.6636 | 0.8222 |
|
142 |
+
| 0.0681 | 72.9412 | 930 | 0.6787 | 0.8 |
|
143 |
+
| 0.0906 | 73.9608 | 943 | 0.6243 | 0.8389 |
|
144 |
+
| 0.0453 | 74.9804 | 956 | 0.6787 | 0.8222 |
|
145 |
+
| 0.0874 | 76.0 | 969 | 0.6259 | 0.8278 |
|
146 |
+
| 0.051 | 76.9412 | 981 | 0.6590 | 0.8278 |
|
147 |
+
| 0.0858 | 77.9608 | 994 | 0.6307 | 0.8278 |
|
148 |
+
| 0.0601 | 78.9804 | 1007 | 0.6042 | 0.8444 |
|
149 |
+
| 0.0601 | 80.0 | 1020 | 0.5875 | 0.8389 |
|
150 |
+
| 0.067 | 80.9412 | 1032 | 0.6078 | 0.8389 |
|
151 |
+
| 0.0556 | 81.9608 | 1045 | 0.6007 | 0.8444 |
|
152 |
+
| 0.0661 | 82.9804 | 1058 | 0.6062 | 0.8333 |
|
153 |
+
| 0.0651 | 84.0 | 1071 | 0.6387 | 0.8111 |
|
154 |
+
| 0.0546 | 84.9412 | 1083 | 0.6861 | 0.8167 |
|
155 |
+
| 0.0827 | 85.9608 | 1096 | 0.6073 | 0.8389 |
|
156 |
+
| 0.052 | 86.9804 | 1109 | 0.5935 | 0.85 |
|
157 |
+
| 0.0524 | 88.0 | 1122 | 0.5899 | 0.8389 |
|
158 |
+
| 0.066 | 88.9412 | 1134 | 0.5954 | 0.8444 |
|
159 |
+
| 0.0617 | 89.9608 | 1147 | 0.6145 | 0.8444 |
|
160 |
+
| 0.0572 | 90.9804 | 1160 | 0.6176 | 0.8444 |
|
161 |
+
| 0.0719 | 92.0 | 1173 | 0.6406 | 0.8278 |
|
162 |
+
| 0.0734 | 92.9412 | 1185 | 0.6485 | 0.8333 |
|
163 |
+
| 0.0616 | 93.9608 | 1198 | 0.6198 | 0.8333 |
|
164 |
+
| 0.0557 | 94.9804 | 1211 | 0.6167 | 0.8389 |
|
165 |
+
| 0.0494 | 96.0 | 1224 | 0.6480 | 0.8444 |
|
166 |
+
| 0.0587 | 96.9412 | 1236 | 0.6076 | 0.85 |
|
167 |
+
| 0.052 | 97.9608 | 1249 | 0.6512 | 0.8389 |
|
168 |
+
| 0.0383 | 98.9804 | 1262 | 0.6782 | 0.8333 |
|
169 |
+
| 0.0499 | 100.0 | 1275 | 0.6542 | 0.8278 |
|
170 |
+
| 0.0511 | 100.9412 | 1287 | 0.6795 | 0.8389 |
|
171 |
+
| 0.0452 | 101.9608 | 1300 | 0.6740 | 0.8333 |
|
172 |
+
| 0.0475 | 102.9804 | 1313 | 0.6616 | 0.8389 |
|
173 |
+
| 0.0455 | 104.0 | 1326 | 0.6490 | 0.8278 |
|
174 |
+
| 0.0486 | 104.9412 | 1338 | 0.6331 | 0.8333 |
|
175 |
+
| 0.0585 | 105.9608 | 1351 | 0.6299 | 0.8333 |
|
176 |
+
| 0.0549 | 106.9804 | 1364 | 0.6398 | 0.8278 |
|
177 |
+
| 0.0436 | 108.0 | 1377 | 0.6338 | 0.8444 |
|
178 |
+
| 0.0429 | 108.9412 | 1389 | 0.6459 | 0.8389 |
|
179 |
+
| 0.0449 | 109.9608 | 1402 | 0.6470 | 0.8444 |
|
180 |
+
| 0.0559 | 110.9804 | 1415 | 0.6463 | 0.8389 |
|
181 |
+
| 0.0378 | 112.0 | 1428 | 0.6480 | 0.8389 |
|
182 |
+
| 0.0476 | 112.9412 | 1440 | 0.6478 | 0.8389 |
|
183 |
+
|
184 |
+
|
185 |
+
### Framework versions
|
186 |
+
|
187 |
+
- Transformers 4.44.0
|
188 |
+
- Pytorch 2.4.0
|
189 |
+
- Datasets 2.21.0
|
190 |
+
- Tokenizers 0.19.1
|
all_results.json
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 112.94117647058823,
|
3 |
+
"eval_accuracy": 0.8388888888888889,
|
4 |
+
"eval_loss": 0.6477780342102051,
|
5 |
+
"eval_runtime": 3.821,
|
6 |
+
"eval_samples_per_second": 47.108,
|
7 |
+
"eval_steps_per_second": 1.57,
|
8 |
+
"total_flos": 4.607069541812011e+18,
|
9 |
+
"train_loss": 0.33674598841203585,
|
10 |
+
"train_runtime": 5395.5485,
|
11 |
+
"train_samples_per_second": 36.03,
|
12 |
+
"train_steps_per_second": 0.267
|
13 |
+
}
|
config.json
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "facebook/convnextv2-tiny-1k-224",
|
3 |
+
"architectures": [
|
4 |
+
"ConvNextV2ForImageClassification"
|
5 |
+
],
|
6 |
+
"depths": [
|
7 |
+
3,
|
8 |
+
3,
|
9 |
+
9,
|
10 |
+
3
|
11 |
+
],
|
12 |
+
"drop_path_rate": 0.0,
|
13 |
+
"hidden_act": "gelu",
|
14 |
+
"hidden_sizes": [
|
15 |
+
96,
|
16 |
+
192,
|
17 |
+
384,
|
18 |
+
768
|
19 |
+
],
|
20 |
+
"id2label": {
|
21 |
+
"0": "blazer",
|
22 |
+
"1": "cardigan",
|
23 |
+
"2": "coat",
|
24 |
+
"3": "jacket",
|
25 |
+
"4": "kurta",
|
26 |
+
"5": "kurti",
|
27 |
+
"6": "poncho",
|
28 |
+
"7": "salwar",
|
29 |
+
"8": "shirt",
|
30 |
+
"9": "shrug",
|
31 |
+
"10": "summer_jacket",
|
32 |
+
"11": "sweatshirt_hoodie",
|
33 |
+
"12": "tshirt",
|
34 |
+
"13": "tunic",
|
35 |
+
"14": "waistcoat"
|
36 |
+
},
|
37 |
+
"image_size": 224,
|
38 |
+
"initializer_range": 0.02,
|
39 |
+
"label2id": {
|
40 |
+
"blazer": 0,
|
41 |
+
"cardigan": 1,
|
42 |
+
"coat": 2,
|
43 |
+
"jacket": 3,
|
44 |
+
"kurta": 4,
|
45 |
+
"kurti": 5,
|
46 |
+
"poncho": 6,
|
47 |
+
"salwar": 7,
|
48 |
+
"shirt": 8,
|
49 |
+
"shrug": 9,
|
50 |
+
"summer_jacket": 10,
|
51 |
+
"sweatshirt_hoodie": 11,
|
52 |
+
"tshirt": 12,
|
53 |
+
"tunic": 13,
|
54 |
+
"waistcoat": 14
|
55 |
+
},
|
56 |
+
"layer_norm_eps": 1e-12,
|
57 |
+
"model_type": "convnextv2",
|
58 |
+
"num_channels": 3,
|
59 |
+
"num_stages": 4,
|
60 |
+
"out_features": [
|
61 |
+
"stage4"
|
62 |
+
],
|
63 |
+
"out_indices": [
|
64 |
+
4
|
65 |
+
],
|
66 |
+
"patch_size": 4,
|
67 |
+
"problem_type": "single_label_classification",
|
68 |
+
"stage_names": [
|
69 |
+
"stem",
|
70 |
+
"stage1",
|
71 |
+
"stage2",
|
72 |
+
"stage3",
|
73 |
+
"stage4"
|
74 |
+
],
|
75 |
+
"torch_dtype": "float32",
|
76 |
+
"transformers_version": "4.44.0"
|
77 |
+
}
|
eval_results.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 112.94117647058823,
|
3 |
+
"eval_accuracy": 0.8388888888888889,
|
4 |
+
"eval_loss": 0.6477780342102051,
|
5 |
+
"eval_runtime": 3.821,
|
6 |
+
"eval_samples_per_second": 47.108,
|
7 |
+
"eval_steps_per_second": 1.57
|
8 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b61e70556d7d913a52ec1290e8b3a2f3f8d177e92b0011e44255a22d43f93167
|
3 |
+
size 111535820
|
preprocessor_config.json
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"crop_pct": 0.875,
|
3 |
+
"do_normalize": true,
|
4 |
+
"do_rescale": true,
|
5 |
+
"do_resize": true,
|
6 |
+
"image_mean": [
|
7 |
+
0.485,
|
8 |
+
0.456,
|
9 |
+
0.406
|
10 |
+
],
|
11 |
+
"image_processor_type": "ConvNextImageProcessor",
|
12 |
+
"image_std": [
|
13 |
+
0.229,
|
14 |
+
0.224,
|
15 |
+
0.225
|
16 |
+
],
|
17 |
+
"resample": 3,
|
18 |
+
"rescale_factor": 0.00392156862745098,
|
19 |
+
"size": {
|
20 |
+
"shortest_edge": 224
|
21 |
+
}
|
22 |
+
}
|
train_results.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 112.94117647058823,
|
3 |
+
"total_flos": 4.607069541812011e+18,
|
4 |
+
"train_loss": 0.33674598841203585,
|
5 |
+
"train_runtime": 5395.5485,
|
6 |
+
"train_samples_per_second": 36.03,
|
7 |
+
"train_steps_per_second": 0.267
|
8 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,2067 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 112.94117647058823,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 1440,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.7843137254901961,
|
13 |
+
"grad_norm": 3.280456066131592,
|
14 |
+
"learning_rate": 3.4722222222222224e-06,
|
15 |
+
"loss": 2.7006,
|
16 |
+
"step": 10
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.9411764705882353,
|
20 |
+
"eval_accuracy": 0.11666666666666667,
|
21 |
+
"eval_loss": 2.678151845932007,
|
22 |
+
"eval_runtime": 4.6451,
|
23 |
+
"eval_samples_per_second": 38.751,
|
24 |
+
"eval_steps_per_second": 1.292,
|
25 |
+
"step": 12
|
26 |
+
},
|
27 |
+
{
|
28 |
+
"epoch": 1.5686274509803921,
|
29 |
+
"grad_norm": 7.857480049133301,
|
30 |
+
"learning_rate": 6.944444444444445e-06,
|
31 |
+
"loss": 2.6863,
|
32 |
+
"step": 20
|
33 |
+
},
|
34 |
+
{
|
35 |
+
"epoch": 1.9607843137254903,
|
36 |
+
"eval_accuracy": 0.16111111111111112,
|
37 |
+
"eval_loss": 2.627171039581299,
|
38 |
+
"eval_runtime": 3.8353,
|
39 |
+
"eval_samples_per_second": 46.933,
|
40 |
+
"eval_steps_per_second": 1.564,
|
41 |
+
"step": 25
|
42 |
+
},
|
43 |
+
{
|
44 |
+
"epoch": 2.3529411764705883,
|
45 |
+
"grad_norm": 3.7707808017730713,
|
46 |
+
"learning_rate": 1.0416666666666668e-05,
|
47 |
+
"loss": 2.6437,
|
48 |
+
"step": 30
|
49 |
+
},
|
50 |
+
{
|
51 |
+
"epoch": 2.980392156862745,
|
52 |
+
"eval_accuracy": 0.28888888888888886,
|
53 |
+
"eval_loss": 2.5389277935028076,
|
54 |
+
"eval_runtime": 3.8826,
|
55 |
+
"eval_samples_per_second": 46.36,
|
56 |
+
"eval_steps_per_second": 1.545,
|
57 |
+
"step": 38
|
58 |
+
},
|
59 |
+
{
|
60 |
+
"epoch": 3.1372549019607843,
|
61 |
+
"grad_norm": 5.107277870178223,
|
62 |
+
"learning_rate": 1.388888888888889e-05,
|
63 |
+
"loss": 2.5839,
|
64 |
+
"step": 40
|
65 |
+
},
|
66 |
+
{
|
67 |
+
"epoch": 3.9215686274509802,
|
68 |
+
"grad_norm": 6.703848361968994,
|
69 |
+
"learning_rate": 1.736111111111111e-05,
|
70 |
+
"loss": 2.4851,
|
71 |
+
"step": 50
|
72 |
+
},
|
73 |
+
{
|
74 |
+
"epoch": 4.0,
|
75 |
+
"eval_accuracy": 0.4111111111111111,
|
76 |
+
"eval_loss": 2.411587953567505,
|
77 |
+
"eval_runtime": 3.8828,
|
78 |
+
"eval_samples_per_second": 46.359,
|
79 |
+
"eval_steps_per_second": 1.545,
|
80 |
+
"step": 51
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"epoch": 4.705882352941177,
|
84 |
+
"grad_norm": 11.087530136108398,
|
85 |
+
"learning_rate": 2.0833333333333336e-05,
|
86 |
+
"loss": 2.3732,
|
87 |
+
"step": 60
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"epoch": 4.9411764705882355,
|
91 |
+
"eval_accuracy": 0.4888888888888889,
|
92 |
+
"eval_loss": 2.270714521408081,
|
93 |
+
"eval_runtime": 3.8466,
|
94 |
+
"eval_samples_per_second": 46.794,
|
95 |
+
"eval_steps_per_second": 1.56,
|
96 |
+
"step": 63
|
97 |
+
},
|
98 |
+
{
|
99 |
+
"epoch": 5.490196078431373,
|
100 |
+
"grad_norm": 7.360437393188477,
|
101 |
+
"learning_rate": 2.4305555555555558e-05,
|
102 |
+
"loss": 2.2546,
|
103 |
+
"step": 70
|
104 |
+
},
|
105 |
+
{
|
106 |
+
"epoch": 5.96078431372549,
|
107 |
+
"eval_accuracy": 0.5722222222222222,
|
108 |
+
"eval_loss": 2.0710320472717285,
|
109 |
+
"eval_runtime": 3.9713,
|
110 |
+
"eval_samples_per_second": 45.326,
|
111 |
+
"eval_steps_per_second": 1.511,
|
112 |
+
"step": 76
|
113 |
+
},
|
114 |
+
{
|
115 |
+
"epoch": 6.2745098039215685,
|
116 |
+
"grad_norm": 6.191979885101318,
|
117 |
+
"learning_rate": 2.777777777777778e-05,
|
118 |
+
"loss": 2.1023,
|
119 |
+
"step": 80
|
120 |
+
},
|
121 |
+
{
|
122 |
+
"epoch": 6.980392156862745,
|
123 |
+
"eval_accuracy": 0.6166666666666667,
|
124 |
+
"eval_loss": 1.8370894193649292,
|
125 |
+
"eval_runtime": 3.8628,
|
126 |
+
"eval_samples_per_second": 46.599,
|
127 |
+
"eval_steps_per_second": 1.553,
|
128 |
+
"step": 89
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 7.0588235294117645,
|
132 |
+
"grad_norm": 7.690328598022461,
|
133 |
+
"learning_rate": 3.125e-05,
|
134 |
+
"loss": 1.9156,
|
135 |
+
"step": 90
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 7.8431372549019605,
|
139 |
+
"grad_norm": 7.919386863708496,
|
140 |
+
"learning_rate": 3.472222222222222e-05,
|
141 |
+
"loss": 1.7115,
|
142 |
+
"step": 100
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"epoch": 8.0,
|
146 |
+
"eval_accuracy": 0.6111111111111112,
|
147 |
+
"eval_loss": 1.6161085367202759,
|
148 |
+
"eval_runtime": 3.8886,
|
149 |
+
"eval_samples_per_second": 46.29,
|
150 |
+
"eval_steps_per_second": 1.543,
|
151 |
+
"step": 102
|
152 |
+
},
|
153 |
+
{
|
154 |
+
"epoch": 8.627450980392156,
|
155 |
+
"grad_norm": 12.924628257751465,
|
156 |
+
"learning_rate": 3.8194444444444444e-05,
|
157 |
+
"loss": 1.5295,
|
158 |
+
"step": 110
|
159 |
+
},
|
160 |
+
{
|
161 |
+
"epoch": 8.941176470588236,
|
162 |
+
"eval_accuracy": 0.6277777777777778,
|
163 |
+
"eval_loss": 1.4381340742111206,
|
164 |
+
"eval_runtime": 3.8538,
|
165 |
+
"eval_samples_per_second": 46.708,
|
166 |
+
"eval_steps_per_second": 1.557,
|
167 |
+
"step": 114
|
168 |
+
},
|
169 |
+
{
|
170 |
+
"epoch": 9.411764705882353,
|
171 |
+
"grad_norm": 14.41945743560791,
|
172 |
+
"learning_rate": 4.166666666666667e-05,
|
173 |
+
"loss": 1.3366,
|
174 |
+
"step": 120
|
175 |
+
},
|
176 |
+
{
|
177 |
+
"epoch": 9.96078431372549,
|
178 |
+
"eval_accuracy": 0.65,
|
179 |
+
"eval_loss": 1.2539671659469604,
|
180 |
+
"eval_runtime": 3.9661,
|
181 |
+
"eval_samples_per_second": 45.385,
|
182 |
+
"eval_steps_per_second": 1.513,
|
183 |
+
"step": 127
|
184 |
+
},
|
185 |
+
{
|
186 |
+
"epoch": 10.196078431372548,
|
187 |
+
"grad_norm": 17.627479553222656,
|
188 |
+
"learning_rate": 4.5138888888888894e-05,
|
189 |
+
"loss": 1.2377,
|
190 |
+
"step": 130
|
191 |
+
},
|
192 |
+
{
|
193 |
+
"epoch": 10.980392156862745,
|
194 |
+
"grad_norm": 13.988055229187012,
|
195 |
+
"learning_rate": 4.8611111111111115e-05,
|
196 |
+
"loss": 1.0556,
|
197 |
+
"step": 140
|
198 |
+
},
|
199 |
+
{
|
200 |
+
"epoch": 10.980392156862745,
|
201 |
+
"eval_accuracy": 0.6611111111111111,
|
202 |
+
"eval_loss": 1.1632429361343384,
|
203 |
+
"eval_runtime": 3.9305,
|
204 |
+
"eval_samples_per_second": 45.796,
|
205 |
+
"eval_steps_per_second": 1.527,
|
206 |
+
"step": 140
|
207 |
+
},
|
208 |
+
{
|
209 |
+
"epoch": 11.764705882352942,
|
210 |
+
"grad_norm": 12.996641159057617,
|
211 |
+
"learning_rate": 4.976851851851852e-05,
|
212 |
+
"loss": 0.9657,
|
213 |
+
"step": 150
|
214 |
+
},
|
215 |
+
{
|
216 |
+
"epoch": 12.0,
|
217 |
+
"eval_accuracy": 0.7,
|
218 |
+
"eval_loss": 1.0600230693817139,
|
219 |
+
"eval_runtime": 3.9116,
|
220 |
+
"eval_samples_per_second": 46.016,
|
221 |
+
"eval_steps_per_second": 1.534,
|
222 |
+
"step": 153
|
223 |
+
},
|
224 |
+
{
|
225 |
+
"epoch": 12.549019607843137,
|
226 |
+
"grad_norm": 26.70894432067871,
|
227 |
+
"learning_rate": 4.938271604938271e-05,
|
228 |
+
"loss": 0.8703,
|
229 |
+
"step": 160
|
230 |
+
},
|
231 |
+
{
|
232 |
+
"epoch": 12.941176470588236,
|
233 |
+
"eval_accuracy": 0.7222222222222222,
|
234 |
+
"eval_loss": 0.9983330368995667,
|
235 |
+
"eval_runtime": 3.823,
|
236 |
+
"eval_samples_per_second": 47.084,
|
237 |
+
"eval_steps_per_second": 1.569,
|
238 |
+
"step": 165
|
239 |
+
},
|
240 |
+
{
|
241 |
+
"epoch": 13.333333333333334,
|
242 |
+
"grad_norm": 24.295700073242188,
|
243 |
+
"learning_rate": 4.899691358024692e-05,
|
244 |
+
"loss": 0.8007,
|
245 |
+
"step": 170
|
246 |
+
},
|
247 |
+
{
|
248 |
+
"epoch": 13.96078431372549,
|
249 |
+
"eval_accuracy": 0.7277777777777777,
|
250 |
+
"eval_loss": 0.9474301934242249,
|
251 |
+
"eval_runtime": 4.0708,
|
252 |
+
"eval_samples_per_second": 44.218,
|
253 |
+
"eval_steps_per_second": 1.474,
|
254 |
+
"step": 178
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"epoch": 14.117647058823529,
|
258 |
+
"grad_norm": 19.43092918395996,
|
259 |
+
"learning_rate": 4.8611111111111115e-05,
|
260 |
+
"loss": 0.7257,
|
261 |
+
"step": 180
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"epoch": 14.901960784313726,
|
265 |
+
"grad_norm": 22.165098190307617,
|
266 |
+
"learning_rate": 4.8225308641975306e-05,
|
267 |
+
"loss": 0.6398,
|
268 |
+
"step": 190
|
269 |
+
},
|
270 |
+
{
|
271 |
+
"epoch": 14.980392156862745,
|
272 |
+
"eval_accuracy": 0.75,
|
273 |
+
"eval_loss": 0.8633670210838318,
|
274 |
+
"eval_runtime": 4.1208,
|
275 |
+
"eval_samples_per_second": 43.681,
|
276 |
+
"eval_steps_per_second": 1.456,
|
277 |
+
"step": 191
|
278 |
+
},
|
279 |
+
{
|
280 |
+
"epoch": 15.686274509803921,
|
281 |
+
"grad_norm": 24.815359115600586,
|
282 |
+
"learning_rate": 4.783950617283951e-05,
|
283 |
+
"loss": 0.6023,
|
284 |
+
"step": 200
|
285 |
+
},
|
286 |
+
{
|
287 |
+
"epoch": 16.0,
|
288 |
+
"eval_accuracy": 0.7277777777777777,
|
289 |
+
"eval_loss": 0.8527319431304932,
|
290 |
+
"eval_runtime": 3.869,
|
291 |
+
"eval_samples_per_second": 46.524,
|
292 |
+
"eval_steps_per_second": 1.551,
|
293 |
+
"step": 204
|
294 |
+
},
|
295 |
+
{
|
296 |
+
"epoch": 16.470588235294116,
|
297 |
+
"grad_norm": 28.00403594970703,
|
298 |
+
"learning_rate": 4.745370370370371e-05,
|
299 |
+
"loss": 0.583,
|
300 |
+
"step": 210
|
301 |
+
},
|
302 |
+
{
|
303 |
+
"epoch": 16.941176470588236,
|
304 |
+
"eval_accuracy": 0.7666666666666667,
|
305 |
+
"eval_loss": 0.7927896976470947,
|
306 |
+
"eval_runtime": 3.8557,
|
307 |
+
"eval_samples_per_second": 46.684,
|
308 |
+
"eval_steps_per_second": 1.556,
|
309 |
+
"step": 216
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"epoch": 17.254901960784313,
|
313 |
+
"grad_norm": 30.892383575439453,
|
314 |
+
"learning_rate": 4.70679012345679e-05,
|
315 |
+
"loss": 0.5279,
|
316 |
+
"step": 220
|
317 |
+
},
|
318 |
+
{
|
319 |
+
"epoch": 17.96078431372549,
|
320 |
+
"eval_accuracy": 0.7833333333333333,
|
321 |
+
"eval_loss": 0.7896744012832642,
|
322 |
+
"eval_runtime": 3.7921,
|
323 |
+
"eval_samples_per_second": 47.468,
|
324 |
+
"eval_steps_per_second": 1.582,
|
325 |
+
"step": 229
|
326 |
+
},
|
327 |
+
{
|
328 |
+
"epoch": 18.03921568627451,
|
329 |
+
"grad_norm": 19.16618537902832,
|
330 |
+
"learning_rate": 4.66820987654321e-05,
|
331 |
+
"loss": 0.5084,
|
332 |
+
"step": 230
|
333 |
+
},
|
334 |
+
{
|
335 |
+
"epoch": 18.823529411764707,
|
336 |
+
"grad_norm": 13.686722755432129,
|
337 |
+
"learning_rate": 4.62962962962963e-05,
|
338 |
+
"loss": 0.4643,
|
339 |
+
"step": 240
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"epoch": 18.980392156862745,
|
343 |
+
"eval_accuracy": 0.7666666666666667,
|
344 |
+
"eval_loss": 0.7885976433753967,
|
345 |
+
"eval_runtime": 3.8507,
|
346 |
+
"eval_samples_per_second": 46.745,
|
347 |
+
"eval_steps_per_second": 1.558,
|
348 |
+
"step": 242
|
349 |
+
},
|
350 |
+
{
|
351 |
+
"epoch": 19.607843137254903,
|
352 |
+
"grad_norm": 17.4645938873291,
|
353 |
+
"learning_rate": 4.591049382716049e-05,
|
354 |
+
"loss": 0.4296,
|
355 |
+
"step": 250
|
356 |
+
},
|
357 |
+
{
|
358 |
+
"epoch": 20.0,
|
359 |
+
"eval_accuracy": 0.7833333333333333,
|
360 |
+
"eval_loss": 0.7328829169273376,
|
361 |
+
"eval_runtime": 3.8093,
|
362 |
+
"eval_samples_per_second": 47.252,
|
363 |
+
"eval_steps_per_second": 1.575,
|
364 |
+
"step": 255
|
365 |
+
},
|
366 |
+
{
|
367 |
+
"epoch": 20.392156862745097,
|
368 |
+
"grad_norm": 16.678590774536133,
|
369 |
+
"learning_rate": 4.5524691358024696e-05,
|
370 |
+
"loss": 0.41,
|
371 |
+
"step": 260
|
372 |
+
},
|
373 |
+
{
|
374 |
+
"epoch": 20.941176470588236,
|
375 |
+
"eval_accuracy": 0.7611111111111111,
|
376 |
+
"eval_loss": 0.7316663861274719,
|
377 |
+
"eval_runtime": 3.8668,
|
378 |
+
"eval_samples_per_second": 46.55,
|
379 |
+
"eval_steps_per_second": 1.552,
|
380 |
+
"step": 267
|
381 |
+
},
|
382 |
+
{
|
383 |
+
"epoch": 21.176470588235293,
|
384 |
+
"grad_norm": 12.328489303588867,
|
385 |
+
"learning_rate": 4.5138888888888894e-05,
|
386 |
+
"loss": 0.3663,
|
387 |
+
"step": 270
|
388 |
+
},
|
389 |
+
{
|
390 |
+
"epoch": 21.96078431372549,
|
391 |
+
"grad_norm": 23.868070602416992,
|
392 |
+
"learning_rate": 4.4753086419753084e-05,
|
393 |
+
"loss": 0.3674,
|
394 |
+
"step": 280
|
395 |
+
},
|
396 |
+
{
|
397 |
+
"epoch": 21.96078431372549,
|
398 |
+
"eval_accuracy": 0.7666666666666667,
|
399 |
+
"eval_loss": 0.7170845866203308,
|
400 |
+
"eval_runtime": 3.956,
|
401 |
+
"eval_samples_per_second": 45.5,
|
402 |
+
"eval_steps_per_second": 1.517,
|
403 |
+
"step": 280
|
404 |
+
},
|
405 |
+
{
|
406 |
+
"epoch": 22.745098039215687,
|
407 |
+
"grad_norm": 21.286258697509766,
|
408 |
+
"learning_rate": 4.436728395061729e-05,
|
409 |
+
"loss": 0.3285,
|
410 |
+
"step": 290
|
411 |
+
},
|
412 |
+
{
|
413 |
+
"epoch": 22.980392156862745,
|
414 |
+
"eval_accuracy": 0.7833333333333333,
|
415 |
+
"eval_loss": 0.7005434036254883,
|
416 |
+
"eval_runtime": 3.9134,
|
417 |
+
"eval_samples_per_second": 45.996,
|
418 |
+
"eval_steps_per_second": 1.533,
|
419 |
+
"step": 293
|
420 |
+
},
|
421 |
+
{
|
422 |
+
"epoch": 23.529411764705884,
|
423 |
+
"grad_norm": 12.573646545410156,
|
424 |
+
"learning_rate": 4.3981481481481486e-05,
|
425 |
+
"loss": 0.2978,
|
426 |
+
"step": 300
|
427 |
+
},
|
428 |
+
{
|
429 |
+
"epoch": 24.0,
|
430 |
+
"eval_accuracy": 0.7888888888888889,
|
431 |
+
"eval_loss": 0.6576042771339417,
|
432 |
+
"eval_runtime": 3.8597,
|
433 |
+
"eval_samples_per_second": 46.636,
|
434 |
+
"eval_steps_per_second": 1.555,
|
435 |
+
"step": 306
|
436 |
+
},
|
437 |
+
{
|
438 |
+
"epoch": 24.313725490196077,
|
439 |
+
"grad_norm": 18.386383056640625,
|
440 |
+
"learning_rate": 4.359567901234568e-05,
|
441 |
+
"loss": 0.293,
|
442 |
+
"step": 310
|
443 |
+
},
|
444 |
+
{
|
445 |
+
"epoch": 24.941176470588236,
|
446 |
+
"eval_accuracy": 0.8,
|
447 |
+
"eval_loss": 0.644997239112854,
|
448 |
+
"eval_runtime": 4.0291,
|
449 |
+
"eval_samples_per_second": 44.675,
|
450 |
+
"eval_steps_per_second": 1.489,
|
451 |
+
"step": 318
|
452 |
+
},
|
453 |
+
{
|
454 |
+
"epoch": 25.098039215686274,
|
455 |
+
"grad_norm": 18.57107925415039,
|
456 |
+
"learning_rate": 4.3209876543209875e-05,
|
457 |
+
"loss": 0.2665,
|
458 |
+
"step": 320
|
459 |
+
},
|
460 |
+
{
|
461 |
+
"epoch": 25.88235294117647,
|
462 |
+
"grad_norm": 16.507802963256836,
|
463 |
+
"learning_rate": 4.282407407407408e-05,
|
464 |
+
"loss": 0.2724,
|
465 |
+
"step": 330
|
466 |
+
},
|
467 |
+
{
|
468 |
+
"epoch": 25.96078431372549,
|
469 |
+
"eval_accuracy": 0.7888888888888889,
|
470 |
+
"eval_loss": 0.6764713525772095,
|
471 |
+
"eval_runtime": 3.8073,
|
472 |
+
"eval_samples_per_second": 47.278,
|
473 |
+
"eval_steps_per_second": 1.576,
|
474 |
+
"step": 331
|
475 |
+
},
|
476 |
+
{
|
477 |
+
"epoch": 26.666666666666668,
|
478 |
+
"grad_norm": 18.386646270751953,
|
479 |
+
"learning_rate": 4.243827160493827e-05,
|
480 |
+
"loss": 0.2494,
|
481 |
+
"step": 340
|
482 |
+
},
|
483 |
+
{
|
484 |
+
"epoch": 26.980392156862745,
|
485 |
+
"eval_accuracy": 0.8055555555555556,
|
486 |
+
"eval_loss": 0.6826486587524414,
|
487 |
+
"eval_runtime": 3.9305,
|
488 |
+
"eval_samples_per_second": 45.796,
|
489 |
+
"eval_steps_per_second": 1.527,
|
490 |
+
"step": 344
|
491 |
+
},
|
492 |
+
{
|
493 |
+
"epoch": 27.45098039215686,
|
494 |
+
"grad_norm": 16.895566940307617,
|
495 |
+
"learning_rate": 4.205246913580247e-05,
|
496 |
+
"loss": 0.2504,
|
497 |
+
"step": 350
|
498 |
+
},
|
499 |
+
{
|
500 |
+
"epoch": 28.0,
|
501 |
+
"eval_accuracy": 0.8055555555555556,
|
502 |
+
"eval_loss": 0.6710352301597595,
|
503 |
+
"eval_runtime": 3.8264,
|
504 |
+
"eval_samples_per_second": 47.041,
|
505 |
+
"eval_steps_per_second": 1.568,
|
506 |
+
"step": 357
|
507 |
+
},
|
508 |
+
{
|
509 |
+
"epoch": 28.235294117647058,
|
510 |
+
"grad_norm": 14.318737983703613,
|
511 |
+
"learning_rate": 4.166666666666667e-05,
|
512 |
+
"loss": 0.2332,
|
513 |
+
"step": 360
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"epoch": 28.941176470588236,
|
517 |
+
"eval_accuracy": 0.7777777777777778,
|
518 |
+
"eval_loss": 0.666705846786499,
|
519 |
+
"eval_runtime": 3.9608,
|
520 |
+
"eval_samples_per_second": 45.445,
|
521 |
+
"eval_steps_per_second": 1.515,
|
522 |
+
"step": 369
|
523 |
+
},
|
524 |
+
{
|
525 |
+
"epoch": 29.019607843137255,
|
526 |
+
"grad_norm": 19.979778289794922,
|
527 |
+
"learning_rate": 4.128086419753087e-05,
|
528 |
+
"loss": 0.2071,
|
529 |
+
"step": 370
|
530 |
+
},
|
531 |
+
{
|
532 |
+
"epoch": 29.80392156862745,
|
533 |
+
"grad_norm": 14.415696144104004,
|
534 |
+
"learning_rate": 4.089506172839506e-05,
|
535 |
+
"loss": 0.2012,
|
536 |
+
"step": 380
|
537 |
+
},
|
538 |
+
{
|
539 |
+
"epoch": 29.96078431372549,
|
540 |
+
"eval_accuracy": 0.7944444444444444,
|
541 |
+
"eval_loss": 0.7399319410324097,
|
542 |
+
"eval_runtime": 3.8411,
|
543 |
+
"eval_samples_per_second": 46.861,
|
544 |
+
"eval_steps_per_second": 1.562,
|
545 |
+
"step": 382
|
546 |
+
},
|
547 |
+
{
|
548 |
+
"epoch": 30.58823529411765,
|
549 |
+
"grad_norm": 10.09865665435791,
|
550 |
+
"learning_rate": 4.0509259259259265e-05,
|
551 |
+
"loss": 0.1866,
|
552 |
+
"step": 390
|
553 |
+
},
|
554 |
+
{
|
555 |
+
"epoch": 30.980392156862745,
|
556 |
+
"eval_accuracy": 0.7833333333333333,
|
557 |
+
"eval_loss": 0.7311467528343201,
|
558 |
+
"eval_runtime": 4.2025,
|
559 |
+
"eval_samples_per_second": 42.831,
|
560 |
+
"eval_steps_per_second": 1.428,
|
561 |
+
"step": 395
|
562 |
+
},
|
563 |
+
{
|
564 |
+
"epoch": 31.372549019607842,
|
565 |
+
"grad_norm": 31.518268585205078,
|
566 |
+
"learning_rate": 4.012345679012346e-05,
|
567 |
+
"loss": 0.2031,
|
568 |
+
"step": 400
|
569 |
+
},
|
570 |
+
{
|
571 |
+
"epoch": 32.0,
|
572 |
+
"eval_accuracy": 0.7944444444444444,
|
573 |
+
"eval_loss": 0.7076573967933655,
|
574 |
+
"eval_runtime": 3.8553,
|
575 |
+
"eval_samples_per_second": 46.689,
|
576 |
+
"eval_steps_per_second": 1.556,
|
577 |
+
"step": 408
|
578 |
+
},
|
579 |
+
{
|
580 |
+
"epoch": 32.15686274509804,
|
581 |
+
"grad_norm": 18.065155029296875,
|
582 |
+
"learning_rate": 3.973765432098765e-05,
|
583 |
+
"loss": 0.1969,
|
584 |
+
"step": 410
|
585 |
+
},
|
586 |
+
{
|
587 |
+
"epoch": 32.94117647058823,
|
588 |
+
"grad_norm": 19.082073211669922,
|
589 |
+
"learning_rate": 3.935185185185186e-05,
|
590 |
+
"loss": 0.1969,
|
591 |
+
"step": 420
|
592 |
+
},
|
593 |
+
{
|
594 |
+
"epoch": 32.94117647058823,
|
595 |
+
"eval_accuracy": 0.7666666666666667,
|
596 |
+
"eval_loss": 0.7769466638565063,
|
597 |
+
"eval_runtime": 3.9404,
|
598 |
+
"eval_samples_per_second": 45.681,
|
599 |
+
"eval_steps_per_second": 1.523,
|
600 |
+
"step": 420
|
601 |
+
},
|
602 |
+
{
|
603 |
+
"epoch": 33.72549019607843,
|
604 |
+
"grad_norm": 23.67195701599121,
|
605 |
+
"learning_rate": 3.8966049382716055e-05,
|
606 |
+
"loss": 0.1968,
|
607 |
+
"step": 430
|
608 |
+
},
|
609 |
+
{
|
610 |
+
"epoch": 33.96078431372549,
|
611 |
+
"eval_accuracy": 0.7833333333333333,
|
612 |
+
"eval_loss": 0.7666174173355103,
|
613 |
+
"eval_runtime": 3.7732,
|
614 |
+
"eval_samples_per_second": 47.705,
|
615 |
+
"eval_steps_per_second": 1.59,
|
616 |
+
"step": 433
|
617 |
+
},
|
618 |
+
{
|
619 |
+
"epoch": 34.509803921568626,
|
620 |
+
"grad_norm": 22.488903045654297,
|
621 |
+
"learning_rate": 3.8580246913580246e-05,
|
622 |
+
"loss": 0.1712,
|
623 |
+
"step": 440
|
624 |
+
},
|
625 |
+
{
|
626 |
+
"epoch": 34.98039215686274,
|
627 |
+
"eval_accuracy": 0.8,
|
628 |
+
"eval_loss": 0.6795583367347717,
|
629 |
+
"eval_runtime": 3.7971,
|
630 |
+
"eval_samples_per_second": 47.404,
|
631 |
+
"eval_steps_per_second": 1.58,
|
632 |
+
"step": 446
|
633 |
+
},
|
634 |
+
{
|
635 |
+
"epoch": 35.294117647058826,
|
636 |
+
"grad_norm": 20.480487823486328,
|
637 |
+
"learning_rate": 3.8194444444444444e-05,
|
638 |
+
"loss": 0.1813,
|
639 |
+
"step": 450
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 36.0,
|
643 |
+
"eval_accuracy": 0.8111111111111111,
|
644 |
+
"eval_loss": 0.6653857827186584,
|
645 |
+
"eval_runtime": 3.8151,
|
646 |
+
"eval_samples_per_second": 47.181,
|
647 |
+
"eval_steps_per_second": 1.573,
|
648 |
+
"step": 459
|
649 |
+
},
|
650 |
+
{
|
651 |
+
"epoch": 36.07843137254902,
|
652 |
+
"grad_norm": 15.032731056213379,
|
653 |
+
"learning_rate": 3.780864197530865e-05,
|
654 |
+
"loss": 0.1625,
|
655 |
+
"step": 460
|
656 |
+
},
|
657 |
+
{
|
658 |
+
"epoch": 36.86274509803921,
|
659 |
+
"grad_norm": 12.346388816833496,
|
660 |
+
"learning_rate": 3.742283950617284e-05,
|
661 |
+
"loss": 0.1678,
|
662 |
+
"step": 470
|
663 |
+
},
|
664 |
+
{
|
665 |
+
"epoch": 36.94117647058823,
|
666 |
+
"eval_accuracy": 0.7888888888888889,
|
667 |
+
"eval_loss": 0.6851311326026917,
|
668 |
+
"eval_runtime": 3.8058,
|
669 |
+
"eval_samples_per_second": 47.296,
|
670 |
+
"eval_steps_per_second": 1.577,
|
671 |
+
"step": 471
|
672 |
+
},
|
673 |
+
{
|
674 |
+
"epoch": 37.64705882352941,
|
675 |
+
"grad_norm": 16.994136810302734,
|
676 |
+
"learning_rate": 3.7037037037037037e-05,
|
677 |
+
"loss": 0.1461,
|
678 |
+
"step": 480
|
679 |
+
},
|
680 |
+
{
|
681 |
+
"epoch": 37.96078431372549,
|
682 |
+
"eval_accuracy": 0.7833333333333333,
|
683 |
+
"eval_loss": 0.7054334878921509,
|
684 |
+
"eval_runtime": 3.847,
|
685 |
+
"eval_samples_per_second": 46.79,
|
686 |
+
"eval_steps_per_second": 1.56,
|
687 |
+
"step": 484
|
688 |
+
},
|
689 |
+
{
|
690 |
+
"epoch": 38.431372549019606,
|
691 |
+
"grad_norm": 9.07701587677002,
|
692 |
+
"learning_rate": 3.665123456790124e-05,
|
693 |
+
"loss": 0.1244,
|
694 |
+
"step": 490
|
695 |
+
},
|
696 |
+
{
|
697 |
+
"epoch": 38.98039215686274,
|
698 |
+
"eval_accuracy": 0.8055555555555556,
|
699 |
+
"eval_loss": 0.7013460993766785,
|
700 |
+
"eval_runtime": 3.8047,
|
701 |
+
"eval_samples_per_second": 47.31,
|
702 |
+
"eval_steps_per_second": 1.577,
|
703 |
+
"step": 497
|
704 |
+
},
|
705 |
+
{
|
706 |
+
"epoch": 39.21568627450981,
|
707 |
+
"grad_norm": 9.217803955078125,
|
708 |
+
"learning_rate": 3.626543209876543e-05,
|
709 |
+
"loss": 0.1385,
|
710 |
+
"step": 500
|
711 |
+
},
|
712 |
+
{
|
713 |
+
"epoch": 40.0,
|
714 |
+
"grad_norm": 18.938865661621094,
|
715 |
+
"learning_rate": 3.587962962962963e-05,
|
716 |
+
"loss": 0.1329,
|
717 |
+
"step": 510
|
718 |
+
},
|
719 |
+
{
|
720 |
+
"epoch": 40.0,
|
721 |
+
"eval_accuracy": 0.8,
|
722 |
+
"eval_loss": 0.6785274147987366,
|
723 |
+
"eval_runtime": 3.86,
|
724 |
+
"eval_samples_per_second": 46.632,
|
725 |
+
"eval_steps_per_second": 1.554,
|
726 |
+
"step": 510
|
727 |
+
},
|
728 |
+
{
|
729 |
+
"epoch": 40.78431372549019,
|
730 |
+
"grad_norm": 12.516762733459473,
|
731 |
+
"learning_rate": 3.5493827160493834e-05,
|
732 |
+
"loss": 0.1186,
|
733 |
+
"step": 520
|
734 |
+
},
|
735 |
+
{
|
736 |
+
"epoch": 40.94117647058823,
|
737 |
+
"eval_accuracy": 0.7777777777777778,
|
738 |
+
"eval_loss": 0.7499803900718689,
|
739 |
+
"eval_runtime": 3.8115,
|
740 |
+
"eval_samples_per_second": 47.225,
|
741 |
+
"eval_steps_per_second": 1.574,
|
742 |
+
"step": 522
|
743 |
+
},
|
744 |
+
{
|
745 |
+
"epoch": 41.568627450980394,
|
746 |
+
"grad_norm": 9.269219398498535,
|
747 |
+
"learning_rate": 3.5108024691358025e-05,
|
748 |
+
"loss": 0.1397,
|
749 |
+
"step": 530
|
750 |
+
},
|
751 |
+
{
|
752 |
+
"epoch": 41.96078431372549,
|
753 |
+
"eval_accuracy": 0.8166666666666667,
|
754 |
+
"eval_loss": 0.6819199919700623,
|
755 |
+
"eval_runtime": 3.8462,
|
756 |
+
"eval_samples_per_second": 46.799,
|
757 |
+
"eval_steps_per_second": 1.56,
|
758 |
+
"step": 535
|
759 |
+
},
|
760 |
+
{
|
761 |
+
"epoch": 42.35294117647059,
|
762 |
+
"grad_norm": 23.982585906982422,
|
763 |
+
"learning_rate": 3.472222222222222e-05,
|
764 |
+
"loss": 0.1324,
|
765 |
+
"step": 540
|
766 |
+
},
|
767 |
+
{
|
768 |
+
"epoch": 42.98039215686274,
|
769 |
+
"eval_accuracy": 0.8111111111111111,
|
770 |
+
"eval_loss": 0.6256746649742126,
|
771 |
+
"eval_runtime": 3.8195,
|
772 |
+
"eval_samples_per_second": 47.126,
|
773 |
+
"eval_steps_per_second": 1.571,
|
774 |
+
"step": 548
|
775 |
+
},
|
776 |
+
{
|
777 |
+
"epoch": 43.13725490196079,
|
778 |
+
"grad_norm": 11.348409652709961,
|
779 |
+
"learning_rate": 3.4336419753086427e-05,
|
780 |
+
"loss": 0.1461,
|
781 |
+
"step": 550
|
782 |
+
},
|
783 |
+
{
|
784 |
+
"epoch": 43.92156862745098,
|
785 |
+
"grad_norm": 14.504171371459961,
|
786 |
+
"learning_rate": 3.395061728395062e-05,
|
787 |
+
"loss": 0.111,
|
788 |
+
"step": 560
|
789 |
+
},
|
790 |
+
{
|
791 |
+
"epoch": 44.0,
|
792 |
+
"eval_accuracy": 0.8277777777777777,
|
793 |
+
"eval_loss": 0.5938891172409058,
|
794 |
+
"eval_runtime": 3.8255,
|
795 |
+
"eval_samples_per_second": 47.053,
|
796 |
+
"eval_steps_per_second": 1.568,
|
797 |
+
"step": 561
|
798 |
+
},
|
799 |
+
{
|
800 |
+
"epoch": 44.705882352941174,
|
801 |
+
"grad_norm": 15.88039493560791,
|
802 |
+
"learning_rate": 3.3564814814814815e-05,
|
803 |
+
"loss": 0.1228,
|
804 |
+
"step": 570
|
805 |
+
},
|
806 |
+
{
|
807 |
+
"epoch": 44.94117647058823,
|
808 |
+
"eval_accuracy": 0.8222222222222222,
|
809 |
+
"eval_loss": 0.6379250288009644,
|
810 |
+
"eval_runtime": 3.8691,
|
811 |
+
"eval_samples_per_second": 46.522,
|
812 |
+
"eval_steps_per_second": 1.551,
|
813 |
+
"step": 573
|
814 |
+
},
|
815 |
+
{
|
816 |
+
"epoch": 45.490196078431374,
|
817 |
+
"grad_norm": 14.967761993408203,
|
818 |
+
"learning_rate": 3.317901234567901e-05,
|
819 |
+
"loss": 0.1085,
|
820 |
+
"step": 580
|
821 |
+
},
|
822 |
+
{
|
823 |
+
"epoch": 45.96078431372549,
|
824 |
+
"eval_accuracy": 0.8222222222222222,
|
825 |
+
"eval_loss": 0.6788524389266968,
|
826 |
+
"eval_runtime": 3.8236,
|
827 |
+
"eval_samples_per_second": 47.077,
|
828 |
+
"eval_steps_per_second": 1.569,
|
829 |
+
"step": 586
|
830 |
+
},
|
831 |
+
{
|
832 |
+
"epoch": 46.27450980392157,
|
833 |
+
"grad_norm": 7.978495121002197,
|
834 |
+
"learning_rate": 3.279320987654321e-05,
|
835 |
+
"loss": 0.1234,
|
836 |
+
"step": 590
|
837 |
+
},
|
838 |
+
{
|
839 |
+
"epoch": 46.98039215686274,
|
840 |
+
"eval_accuracy": 0.8277777777777777,
|
841 |
+
"eval_loss": 0.624097466468811,
|
842 |
+
"eval_runtime": 3.7905,
|
843 |
+
"eval_samples_per_second": 47.487,
|
844 |
+
"eval_steps_per_second": 1.583,
|
845 |
+
"step": 599
|
846 |
+
},
|
847 |
+
{
|
848 |
+
"epoch": 47.05882352941177,
|
849 |
+
"grad_norm": 21.228994369506836,
|
850 |
+
"learning_rate": 3.240740740740741e-05,
|
851 |
+
"loss": 0.1007,
|
852 |
+
"step": 600
|
853 |
+
},
|
854 |
+
{
|
855 |
+
"epoch": 47.84313725490196,
|
856 |
+
"grad_norm": 16.632568359375,
|
857 |
+
"learning_rate": 3.2021604938271605e-05,
|
858 |
+
"loss": 0.1129,
|
859 |
+
"step": 610
|
860 |
+
},
|
861 |
+
{
|
862 |
+
"epoch": 48.0,
|
863 |
+
"eval_accuracy": 0.7888888888888889,
|
864 |
+
"eval_loss": 0.750299334526062,
|
865 |
+
"eval_runtime": 3.8266,
|
866 |
+
"eval_samples_per_second": 47.039,
|
867 |
+
"eval_steps_per_second": 1.568,
|
868 |
+
"step": 612
|
869 |
+
},
|
870 |
+
{
|
871 |
+
"epoch": 48.627450980392155,
|
872 |
+
"grad_norm": 8.629143714904785,
|
873 |
+
"learning_rate": 3.16358024691358e-05,
|
874 |
+
"loss": 0.1197,
|
875 |
+
"step": 620
|
876 |
+
},
|
877 |
+
{
|
878 |
+
"epoch": 48.94117647058823,
|
879 |
+
"eval_accuracy": 0.7944444444444444,
|
880 |
+
"eval_loss": 0.6861774325370789,
|
881 |
+
"eval_runtime": 3.8119,
|
882 |
+
"eval_samples_per_second": 47.22,
|
883 |
+
"eval_steps_per_second": 1.574,
|
884 |
+
"step": 624
|
885 |
+
},
|
886 |
+
{
|
887 |
+
"epoch": 49.411764705882355,
|
888 |
+
"grad_norm": 7.733061790466309,
|
889 |
+
"learning_rate": 3.125e-05,
|
890 |
+
"loss": 0.0898,
|
891 |
+
"step": 630
|
892 |
+
},
|
893 |
+
{
|
894 |
+
"epoch": 49.96078431372549,
|
895 |
+
"eval_accuracy": 0.7888888888888889,
|
896 |
+
"eval_loss": 0.6763875484466553,
|
897 |
+
"eval_runtime": 3.818,
|
898 |
+
"eval_samples_per_second": 47.145,
|
899 |
+
"eval_steps_per_second": 1.571,
|
900 |
+
"step": 637
|
901 |
+
},
|
902 |
+
{
|
903 |
+
"epoch": 50.19607843137255,
|
904 |
+
"grad_norm": 4.7213454246521,
|
905 |
+
"learning_rate": 3.08641975308642e-05,
|
906 |
+
"loss": 0.1021,
|
907 |
+
"step": 640
|
908 |
+
},
|
909 |
+
{
|
910 |
+
"epoch": 50.98039215686274,
|
911 |
+
"grad_norm": 7.109160423278809,
|
912 |
+
"learning_rate": 3.04783950617284e-05,
|
913 |
+
"loss": 0.1057,
|
914 |
+
"step": 650
|
915 |
+
},
|
916 |
+
{
|
917 |
+
"epoch": 50.98039215686274,
|
918 |
+
"eval_accuracy": 0.8166666666666667,
|
919 |
+
"eval_loss": 0.6338934898376465,
|
920 |
+
"eval_runtime": 3.8669,
|
921 |
+
"eval_samples_per_second": 46.549,
|
922 |
+
"eval_steps_per_second": 1.552,
|
923 |
+
"step": 650
|
924 |
+
},
|
925 |
+
{
|
926 |
+
"epoch": 51.76470588235294,
|
927 |
+
"grad_norm": 16.793262481689453,
|
928 |
+
"learning_rate": 3.0092592592592593e-05,
|
929 |
+
"loss": 0.0893,
|
930 |
+
"step": 660
|
931 |
+
},
|
932 |
+
{
|
933 |
+
"epoch": 52.0,
|
934 |
+
"eval_accuracy": 0.85,
|
935 |
+
"eval_loss": 0.5828067064285278,
|
936 |
+
"eval_runtime": 3.8135,
|
937 |
+
"eval_samples_per_second": 47.2,
|
938 |
+
"eval_steps_per_second": 1.573,
|
939 |
+
"step": 663
|
940 |
+
},
|
941 |
+
{
|
942 |
+
"epoch": 52.549019607843135,
|
943 |
+
"grad_norm": 15.305388450622559,
|
944 |
+
"learning_rate": 2.970679012345679e-05,
|
945 |
+
"loss": 0.0736,
|
946 |
+
"step": 670
|
947 |
+
},
|
948 |
+
{
|
949 |
+
"epoch": 52.94117647058823,
|
950 |
+
"eval_accuracy": 0.8111111111111111,
|
951 |
+
"eval_loss": 0.6572611331939697,
|
952 |
+
"eval_runtime": 3.8338,
|
953 |
+
"eval_samples_per_second": 46.951,
|
954 |
+
"eval_steps_per_second": 1.565,
|
955 |
+
"step": 675
|
956 |
+
},
|
957 |
+
{
|
958 |
+
"epoch": 53.333333333333336,
|
959 |
+
"grad_norm": 13.537842750549316,
|
960 |
+
"learning_rate": 2.9320987654320992e-05,
|
961 |
+
"loss": 0.0752,
|
962 |
+
"step": 680
|
963 |
+
},
|
964 |
+
{
|
965 |
+
"epoch": 53.96078431372549,
|
966 |
+
"eval_accuracy": 0.7944444444444444,
|
967 |
+
"eval_loss": 0.6806420087814331,
|
968 |
+
"eval_runtime": 3.821,
|
969 |
+
"eval_samples_per_second": 47.108,
|
970 |
+
"eval_steps_per_second": 1.57,
|
971 |
+
"step": 688
|
972 |
+
},
|
973 |
+
{
|
974 |
+
"epoch": 54.11764705882353,
|
975 |
+
"grad_norm": 21.195058822631836,
|
976 |
+
"learning_rate": 2.8935185185185186e-05,
|
977 |
+
"loss": 0.081,
|
978 |
+
"step": 690
|
979 |
+
},
|
980 |
+
{
|
981 |
+
"epoch": 54.90196078431372,
|
982 |
+
"grad_norm": 4.959319591522217,
|
983 |
+
"learning_rate": 2.8549382716049384e-05,
|
984 |
+
"loss": 0.1127,
|
985 |
+
"step": 700
|
986 |
+
},
|
987 |
+
{
|
988 |
+
"epoch": 54.98039215686274,
|
989 |
+
"eval_accuracy": 0.8111111111111111,
|
990 |
+
"eval_loss": 0.6222459673881531,
|
991 |
+
"eval_runtime": 3.8138,
|
992 |
+
"eval_samples_per_second": 47.197,
|
993 |
+
"eval_steps_per_second": 1.573,
|
994 |
+
"step": 701
|
995 |
+
},
|
996 |
+
{
|
997 |
+
"epoch": 55.68627450980392,
|
998 |
+
"grad_norm": 15.941388130187988,
|
999 |
+
"learning_rate": 2.8163580246913578e-05,
|
1000 |
+
"loss": 0.1126,
|
1001 |
+
"step": 710
|
1002 |
+
},
|
1003 |
+
{
|
1004 |
+
"epoch": 56.0,
|
1005 |
+
"eval_accuracy": 0.8166666666666667,
|
1006 |
+
"eval_loss": 0.6305037140846252,
|
1007 |
+
"eval_runtime": 3.7889,
|
1008 |
+
"eval_samples_per_second": 47.507,
|
1009 |
+
"eval_steps_per_second": 1.584,
|
1010 |
+
"step": 714
|
1011 |
+
},
|
1012 |
+
{
|
1013 |
+
"epoch": 56.470588235294116,
|
1014 |
+
"grad_norm": 12.527265548706055,
|
1015 |
+
"learning_rate": 2.777777777777778e-05,
|
1016 |
+
"loss": 0.0874,
|
1017 |
+
"step": 720
|
1018 |
+
},
|
1019 |
+
{
|
1020 |
+
"epoch": 56.94117647058823,
|
1021 |
+
"eval_accuracy": 0.8111111111111111,
|
1022 |
+
"eval_loss": 0.6593422293663025,
|
1023 |
+
"eval_runtime": 3.7695,
|
1024 |
+
"eval_samples_per_second": 47.751,
|
1025 |
+
"eval_steps_per_second": 1.592,
|
1026 |
+
"step": 726
|
1027 |
+
},
|
1028 |
+
{
|
1029 |
+
"epoch": 57.254901960784316,
|
1030 |
+
"grad_norm": 7.021444797515869,
|
1031 |
+
"learning_rate": 2.7391975308641977e-05,
|
1032 |
+
"loss": 0.0806,
|
1033 |
+
"step": 730
|
1034 |
+
},
|
1035 |
+
{
|
1036 |
+
"epoch": 57.96078431372549,
|
1037 |
+
"eval_accuracy": 0.8166666666666667,
|
1038 |
+
"eval_loss": 0.7005773782730103,
|
1039 |
+
"eval_runtime": 3.7654,
|
1040 |
+
"eval_samples_per_second": 47.804,
|
1041 |
+
"eval_steps_per_second": 1.593,
|
1042 |
+
"step": 739
|
1043 |
+
},
|
1044 |
+
{
|
1045 |
+
"epoch": 58.03921568627451,
|
1046 |
+
"grad_norm": 13.148822784423828,
|
1047 |
+
"learning_rate": 2.700617283950617e-05,
|
1048 |
+
"loss": 0.0862,
|
1049 |
+
"step": 740
|
1050 |
+
},
|
1051 |
+
{
|
1052 |
+
"epoch": 58.8235294117647,
|
1053 |
+
"grad_norm": 21.20357322692871,
|
1054 |
+
"learning_rate": 2.6620370370370372e-05,
|
1055 |
+
"loss": 0.0978,
|
1056 |
+
"step": 750
|
1057 |
+
},
|
1058 |
+
{
|
1059 |
+
"epoch": 58.98039215686274,
|
1060 |
+
"eval_accuracy": 0.8055555555555556,
|
1061 |
+
"eval_loss": 0.6680053472518921,
|
1062 |
+
"eval_runtime": 3.8444,
|
1063 |
+
"eval_samples_per_second": 46.821,
|
1064 |
+
"eval_steps_per_second": 1.561,
|
1065 |
+
"step": 752
|
1066 |
+
},
|
1067 |
+
{
|
1068 |
+
"epoch": 59.6078431372549,
|
1069 |
+
"grad_norm": 14.901837348937988,
|
1070 |
+
"learning_rate": 2.623456790123457e-05,
|
1071 |
+
"loss": 0.0875,
|
1072 |
+
"step": 760
|
1073 |
+
},
|
1074 |
+
{
|
1075 |
+
"epoch": 60.0,
|
1076 |
+
"eval_accuracy": 0.8166666666666667,
|
1077 |
+
"eval_loss": 0.67389976978302,
|
1078 |
+
"eval_runtime": 3.8169,
|
1079 |
+
"eval_samples_per_second": 47.158,
|
1080 |
+
"eval_steps_per_second": 1.572,
|
1081 |
+
"step": 765
|
1082 |
+
},
|
1083 |
+
{
|
1084 |
+
"epoch": 60.3921568627451,
|
1085 |
+
"grad_norm": 7.75632905960083,
|
1086 |
+
"learning_rate": 2.5848765432098764e-05,
|
1087 |
+
"loss": 0.0722,
|
1088 |
+
"step": 770
|
1089 |
+
},
|
1090 |
+
{
|
1091 |
+
"epoch": 60.94117647058823,
|
1092 |
+
"eval_accuracy": 0.8333333333333334,
|
1093 |
+
"eval_loss": 0.6340806484222412,
|
1094 |
+
"eval_runtime": 3.804,
|
1095 |
+
"eval_samples_per_second": 47.318,
|
1096 |
+
"eval_steps_per_second": 1.577,
|
1097 |
+
"step": 777
|
1098 |
+
},
|
1099 |
+
{
|
1100 |
+
"epoch": 61.1764705882353,
|
1101 |
+
"grad_norm": 15.415738105773926,
|
1102 |
+
"learning_rate": 2.5462962962962965e-05,
|
1103 |
+
"loss": 0.0901,
|
1104 |
+
"step": 780
|
1105 |
+
},
|
1106 |
+
{
|
1107 |
+
"epoch": 61.96078431372549,
|
1108 |
+
"grad_norm": 4.349020004272461,
|
1109 |
+
"learning_rate": 2.5077160493827162e-05,
|
1110 |
+
"loss": 0.0942,
|
1111 |
+
"step": 790
|
1112 |
+
},
|
1113 |
+
{
|
1114 |
+
"epoch": 61.96078431372549,
|
1115 |
+
"eval_accuracy": 0.8,
|
1116 |
+
"eval_loss": 0.6428362727165222,
|
1117 |
+
"eval_runtime": 3.7936,
|
1118 |
+
"eval_samples_per_second": 47.448,
|
1119 |
+
"eval_steps_per_second": 1.582,
|
1120 |
+
"step": 790
|
1121 |
+
},
|
1122 |
+
{
|
1123 |
+
"epoch": 62.745098039215684,
|
1124 |
+
"grad_norm": 9.049278259277344,
|
1125 |
+
"learning_rate": 2.4691358024691357e-05,
|
1126 |
+
"loss": 0.0957,
|
1127 |
+
"step": 800
|
1128 |
+
},
|
1129 |
+
{
|
1130 |
+
"epoch": 62.98039215686274,
|
1131 |
+
"eval_accuracy": 0.8,
|
1132 |
+
"eval_loss": 0.6757560968399048,
|
1133 |
+
"eval_runtime": 3.8348,
|
1134 |
+
"eval_samples_per_second": 46.938,
|
1135 |
+
"eval_steps_per_second": 1.565,
|
1136 |
+
"step": 803
|
1137 |
+
},
|
1138 |
+
{
|
1139 |
+
"epoch": 63.529411764705884,
|
1140 |
+
"grad_norm": 11.159144401550293,
|
1141 |
+
"learning_rate": 2.4305555555555558e-05,
|
1142 |
+
"loss": 0.0814,
|
1143 |
+
"step": 810
|
1144 |
+
},
|
1145 |
+
{
|
1146 |
+
"epoch": 64.0,
|
1147 |
+
"eval_accuracy": 0.8166666666666667,
|
1148 |
+
"eval_loss": 0.6104480028152466,
|
1149 |
+
"eval_runtime": 3.8591,
|
1150 |
+
"eval_samples_per_second": 46.643,
|
1151 |
+
"eval_steps_per_second": 1.555,
|
1152 |
+
"step": 816
|
1153 |
+
},
|
1154 |
+
{
|
1155 |
+
"epoch": 64.31372549019608,
|
1156 |
+
"grad_norm": 11.834258079528809,
|
1157 |
+
"learning_rate": 2.3919753086419755e-05,
|
1158 |
+
"loss": 0.077,
|
1159 |
+
"step": 820
|
1160 |
+
},
|
1161 |
+
{
|
1162 |
+
"epoch": 64.94117647058823,
|
1163 |
+
"eval_accuracy": 0.8111111111111111,
|
1164 |
+
"eval_loss": 0.6226403713226318,
|
1165 |
+
"eval_runtime": 3.8932,
|
1166 |
+
"eval_samples_per_second": 46.235,
|
1167 |
+
"eval_steps_per_second": 1.541,
|
1168 |
+
"step": 828
|
1169 |
+
},
|
1170 |
+
{
|
1171 |
+
"epoch": 65.09803921568627,
|
1172 |
+
"grad_norm": 11.226044654846191,
|
1173 |
+
"learning_rate": 2.353395061728395e-05,
|
1174 |
+
"loss": 0.0862,
|
1175 |
+
"step": 830
|
1176 |
+
},
|
1177 |
+
{
|
1178 |
+
"epoch": 65.88235294117646,
|
1179 |
+
"grad_norm": 14.373990058898926,
|
1180 |
+
"learning_rate": 2.314814814814815e-05,
|
1181 |
+
"loss": 0.1004,
|
1182 |
+
"step": 840
|
1183 |
+
},
|
1184 |
+
{
|
1185 |
+
"epoch": 65.96078431372548,
|
1186 |
+
"eval_accuracy": 0.8055555555555556,
|
1187 |
+
"eval_loss": 0.6898564696311951,
|
1188 |
+
"eval_runtime": 3.8229,
|
1189 |
+
"eval_samples_per_second": 47.085,
|
1190 |
+
"eval_steps_per_second": 1.569,
|
1191 |
+
"step": 841
|
1192 |
+
},
|
1193 |
+
{
|
1194 |
+
"epoch": 66.66666666666667,
|
1195 |
+
"grad_norm": 8.56983757019043,
|
1196 |
+
"learning_rate": 2.2762345679012348e-05,
|
1197 |
+
"loss": 0.0697,
|
1198 |
+
"step": 850
|
1199 |
+
},
|
1200 |
+
{
|
1201 |
+
"epoch": 66.98039215686275,
|
1202 |
+
"eval_accuracy": 0.8166666666666667,
|
1203 |
+
"eval_loss": 0.7104570865631104,
|
1204 |
+
"eval_runtime": 3.7843,
|
1205 |
+
"eval_samples_per_second": 47.565,
|
1206 |
+
"eval_steps_per_second": 1.585,
|
1207 |
+
"step": 854
|
1208 |
+
},
|
1209 |
+
{
|
1210 |
+
"epoch": 67.45098039215686,
|
1211 |
+
"grad_norm": 7.092602729797363,
|
1212 |
+
"learning_rate": 2.2376543209876542e-05,
|
1213 |
+
"loss": 0.0754,
|
1214 |
+
"step": 860
|
1215 |
+
},
|
1216 |
+
{
|
1217 |
+
"epoch": 68.0,
|
1218 |
+
"eval_accuracy": 0.8111111111111111,
|
1219 |
+
"eval_loss": 0.675083339214325,
|
1220 |
+
"eval_runtime": 3.8377,
|
1221 |
+
"eval_samples_per_second": 46.903,
|
1222 |
+
"eval_steps_per_second": 1.563,
|
1223 |
+
"step": 867
|
1224 |
+
},
|
1225 |
+
{
|
1226 |
+
"epoch": 68.23529411764706,
|
1227 |
+
"grad_norm": 21.711984634399414,
|
1228 |
+
"learning_rate": 2.1990740740740743e-05,
|
1229 |
+
"loss": 0.0842,
|
1230 |
+
"step": 870
|
1231 |
+
},
|
1232 |
+
{
|
1233 |
+
"epoch": 68.94117647058823,
|
1234 |
+
"eval_accuracy": 0.7833333333333333,
|
1235 |
+
"eval_loss": 0.6912497878074646,
|
1236 |
+
"eval_runtime": 4.1438,
|
1237 |
+
"eval_samples_per_second": 43.438,
|
1238 |
+
"eval_steps_per_second": 1.448,
|
1239 |
+
"step": 879
|
1240 |
+
},
|
1241 |
+
{
|
1242 |
+
"epoch": 69.01960784313725,
|
1243 |
+
"grad_norm": 17.59021759033203,
|
1244 |
+
"learning_rate": 2.1604938271604937e-05,
|
1245 |
+
"loss": 0.0815,
|
1246 |
+
"step": 880
|
1247 |
+
},
|
1248 |
+
{
|
1249 |
+
"epoch": 69.80392156862744,
|
1250 |
+
"grad_norm": 6.925079822540283,
|
1251 |
+
"learning_rate": 2.1219135802469135e-05,
|
1252 |
+
"loss": 0.0684,
|
1253 |
+
"step": 890
|
1254 |
+
},
|
1255 |
+
{
|
1256 |
+
"epoch": 69.96078431372548,
|
1257 |
+
"eval_accuracy": 0.8166666666666667,
|
1258 |
+
"eval_loss": 0.7235284447669983,
|
1259 |
+
"eval_runtime": 3.8887,
|
1260 |
+
"eval_samples_per_second": 46.288,
|
1261 |
+
"eval_steps_per_second": 1.543,
|
1262 |
+
"step": 892
|
1263 |
+
},
|
1264 |
+
{
|
1265 |
+
"epoch": 70.58823529411765,
|
1266 |
+
"grad_norm": 10.211894989013672,
|
1267 |
+
"learning_rate": 2.0833333333333336e-05,
|
1268 |
+
"loss": 0.0684,
|
1269 |
+
"step": 900
|
1270 |
+
},
|
1271 |
+
{
|
1272 |
+
"epoch": 70.98039215686275,
|
1273 |
+
"eval_accuracy": 0.8277777777777777,
|
1274 |
+
"eval_loss": 0.5839894413948059,
|
1275 |
+
"eval_runtime": 3.8698,
|
1276 |
+
"eval_samples_per_second": 46.514,
|
1277 |
+
"eval_steps_per_second": 1.55,
|
1278 |
+
"step": 905
|
1279 |
+
},
|
1280 |
+
{
|
1281 |
+
"epoch": 71.37254901960785,
|
1282 |
+
"grad_norm": 7.931591987609863,
|
1283 |
+
"learning_rate": 2.044753086419753e-05,
|
1284 |
+
"loss": 0.0705,
|
1285 |
+
"step": 910
|
1286 |
+
},
|
1287 |
+
{
|
1288 |
+
"epoch": 72.0,
|
1289 |
+
"eval_accuracy": 0.8222222222222222,
|
1290 |
+
"eval_loss": 0.6635811924934387,
|
1291 |
+
"eval_runtime": 3.899,
|
1292 |
+
"eval_samples_per_second": 46.165,
|
1293 |
+
"eval_steps_per_second": 1.539,
|
1294 |
+
"step": 918
|
1295 |
+
},
|
1296 |
+
{
|
1297 |
+
"epoch": 72.15686274509804,
|
1298 |
+
"grad_norm": 8.439017295837402,
|
1299 |
+
"learning_rate": 2.006172839506173e-05,
|
1300 |
+
"loss": 0.0532,
|
1301 |
+
"step": 920
|
1302 |
+
},
|
1303 |
+
{
|
1304 |
+
"epoch": 72.94117647058823,
|
1305 |
+
"grad_norm": 20.3321475982666,
|
1306 |
+
"learning_rate": 1.967592592592593e-05,
|
1307 |
+
"loss": 0.0681,
|
1308 |
+
"step": 930
|
1309 |
+
},
|
1310 |
+
{
|
1311 |
+
"epoch": 72.94117647058823,
|
1312 |
+
"eval_accuracy": 0.8,
|
1313 |
+
"eval_loss": 0.678679883480072,
|
1314 |
+
"eval_runtime": 3.8456,
|
1315 |
+
"eval_samples_per_second": 46.807,
|
1316 |
+
"eval_steps_per_second": 1.56,
|
1317 |
+
"step": 930
|
1318 |
+
},
|
1319 |
+
{
|
1320 |
+
"epoch": 73.72549019607843,
|
1321 |
+
"grad_norm": 16.518983840942383,
|
1322 |
+
"learning_rate": 1.9290123456790123e-05,
|
1323 |
+
"loss": 0.0906,
|
1324 |
+
"step": 940
|
1325 |
+
},
|
1326 |
+
{
|
1327 |
+
"epoch": 73.96078431372548,
|
1328 |
+
"eval_accuracy": 0.8388888888888889,
|
1329 |
+
"eval_loss": 0.6242751479148865,
|
1330 |
+
"eval_runtime": 3.8813,
|
1331 |
+
"eval_samples_per_second": 46.376,
|
1332 |
+
"eval_steps_per_second": 1.546,
|
1333 |
+
"step": 943
|
1334 |
+
},
|
1335 |
+
{
|
1336 |
+
"epoch": 74.50980392156863,
|
1337 |
+
"grad_norm": 10.190762519836426,
|
1338 |
+
"learning_rate": 1.8904320987654324e-05,
|
1339 |
+
"loss": 0.0453,
|
1340 |
+
"step": 950
|
1341 |
+
},
|
1342 |
+
{
|
1343 |
+
"epoch": 74.98039215686275,
|
1344 |
+
"eval_accuracy": 0.8222222222222222,
|
1345 |
+
"eval_loss": 0.6786649823188782,
|
1346 |
+
"eval_runtime": 3.8468,
|
1347 |
+
"eval_samples_per_second": 46.793,
|
1348 |
+
"eval_steps_per_second": 1.56,
|
1349 |
+
"step": 956
|
1350 |
+
},
|
1351 |
+
{
|
1352 |
+
"epoch": 75.29411764705883,
|
1353 |
+
"grad_norm": 12.627336502075195,
|
1354 |
+
"learning_rate": 1.8518518518518518e-05,
|
1355 |
+
"loss": 0.0874,
|
1356 |
+
"step": 960
|
1357 |
+
},
|
1358 |
+
{
|
1359 |
+
"epoch": 76.0,
|
1360 |
+
"eval_accuracy": 0.8277777777777777,
|
1361 |
+
"eval_loss": 0.6259381771087646,
|
1362 |
+
"eval_runtime": 3.9491,
|
1363 |
+
"eval_samples_per_second": 45.58,
|
1364 |
+
"eval_steps_per_second": 1.519,
|
1365 |
+
"step": 969
|
1366 |
+
},
|
1367 |
+
{
|
1368 |
+
"epoch": 76.07843137254902,
|
1369 |
+
"grad_norm": 15.190587997436523,
|
1370 |
+
"learning_rate": 1.8132716049382716e-05,
|
1371 |
+
"loss": 0.0668,
|
1372 |
+
"step": 970
|
1373 |
+
},
|
1374 |
+
{
|
1375 |
+
"epoch": 76.86274509803921,
|
1376 |
+
"grad_norm": 4.534496307373047,
|
1377 |
+
"learning_rate": 1.7746913580246917e-05,
|
1378 |
+
"loss": 0.051,
|
1379 |
+
"step": 980
|
1380 |
+
},
|
1381 |
+
{
|
1382 |
+
"epoch": 76.94117647058823,
|
1383 |
+
"eval_accuracy": 0.8277777777777777,
|
1384 |
+
"eval_loss": 0.6590437293052673,
|
1385 |
+
"eval_runtime": 3.8024,
|
1386 |
+
"eval_samples_per_second": 47.339,
|
1387 |
+
"eval_steps_per_second": 1.578,
|
1388 |
+
"step": 981
|
1389 |
+
},
|
1390 |
+
{
|
1391 |
+
"epoch": 77.6470588235294,
|
1392 |
+
"grad_norm": 12.094006538391113,
|
1393 |
+
"learning_rate": 1.736111111111111e-05,
|
1394 |
+
"loss": 0.0858,
|
1395 |
+
"step": 990
|
1396 |
+
},
|
1397 |
+
{
|
1398 |
+
"epoch": 77.96078431372548,
|
1399 |
+
"eval_accuracy": 0.8277777777777777,
|
1400 |
+
"eval_loss": 0.6306740045547485,
|
1401 |
+
"eval_runtime": 4.0063,
|
1402 |
+
"eval_samples_per_second": 44.929,
|
1403 |
+
"eval_steps_per_second": 1.498,
|
1404 |
+
"step": 994
|
1405 |
+
},
|
1406 |
+
{
|
1407 |
+
"epoch": 78.43137254901961,
|
1408 |
+
"grad_norm": 12.669979095458984,
|
1409 |
+
"learning_rate": 1.697530864197531e-05,
|
1410 |
+
"loss": 0.0601,
|
1411 |
+
"step": 1000
|
1412 |
+
},
|
1413 |
+
{
|
1414 |
+
"epoch": 78.98039215686275,
|
1415 |
+
"eval_accuracy": 0.8444444444444444,
|
1416 |
+
"eval_loss": 0.6041626334190369,
|
1417 |
+
"eval_runtime": 3.9261,
|
1418 |
+
"eval_samples_per_second": 45.847,
|
1419 |
+
"eval_steps_per_second": 1.528,
|
1420 |
+
"step": 1007
|
1421 |
+
},
|
1422 |
+
{
|
1423 |
+
"epoch": 79.2156862745098,
|
1424 |
+
"grad_norm": 13.32419490814209,
|
1425 |
+
"learning_rate": 1.6589506172839506e-05,
|
1426 |
+
"loss": 0.0596,
|
1427 |
+
"step": 1010
|
1428 |
+
},
|
1429 |
+
{
|
1430 |
+
"epoch": 80.0,
|
1431 |
+
"grad_norm": 17.491554260253906,
|
1432 |
+
"learning_rate": 1.6203703703703704e-05,
|
1433 |
+
"loss": 0.0601,
|
1434 |
+
"step": 1020
|
1435 |
+
},
|
1436 |
+
{
|
1437 |
+
"epoch": 80.0,
|
1438 |
+
"eval_accuracy": 0.8388888888888889,
|
1439 |
+
"eval_loss": 0.5874945521354675,
|
1440 |
+
"eval_runtime": 4.0068,
|
1441 |
+
"eval_samples_per_second": 44.923,
|
1442 |
+
"eval_steps_per_second": 1.497,
|
1443 |
+
"step": 1020
|
1444 |
+
},
|
1445 |
+
{
|
1446 |
+
"epoch": 80.7843137254902,
|
1447 |
+
"grad_norm": 7.148036956787109,
|
1448 |
+
"learning_rate": 1.58179012345679e-05,
|
1449 |
+
"loss": 0.067,
|
1450 |
+
"step": 1030
|
1451 |
+
},
|
1452 |
+
{
|
1453 |
+
"epoch": 80.94117647058823,
|
1454 |
+
"eval_accuracy": 0.8388888888888889,
|
1455 |
+
"eval_loss": 0.6078370809555054,
|
1456 |
+
"eval_runtime": 3.7634,
|
1457 |
+
"eval_samples_per_second": 47.829,
|
1458 |
+
"eval_steps_per_second": 1.594,
|
1459 |
+
"step": 1032
|
1460 |
+
},
|
1461 |
+
{
|
1462 |
+
"epoch": 81.56862745098039,
|
1463 |
+
"grad_norm": 6.120352745056152,
|
1464 |
+
"learning_rate": 1.54320987654321e-05,
|
1465 |
+
"loss": 0.0556,
|
1466 |
+
"step": 1040
|
1467 |
+
},
|
1468 |
+
{
|
1469 |
+
"epoch": 81.96078431372548,
|
1470 |
+
"eval_accuracy": 0.8444444444444444,
|
1471 |
+
"eval_loss": 0.6006819605827332,
|
1472 |
+
"eval_runtime": 3.8921,
|
1473 |
+
"eval_samples_per_second": 46.248,
|
1474 |
+
"eval_steps_per_second": 1.542,
|
1475 |
+
"step": 1045
|
1476 |
+
},
|
1477 |
+
{
|
1478 |
+
"epoch": 82.3529411764706,
|
1479 |
+
"grad_norm": 9.7392578125,
|
1480 |
+
"learning_rate": 1.5046296296296297e-05,
|
1481 |
+
"loss": 0.0661,
|
1482 |
+
"step": 1050
|
1483 |
+
},
|
1484 |
+
{
|
1485 |
+
"epoch": 82.98039215686275,
|
1486 |
+
"eval_accuracy": 0.8333333333333334,
|
1487 |
+
"eval_loss": 0.6062378287315369,
|
1488 |
+
"eval_runtime": 3.7924,
|
1489 |
+
"eval_samples_per_second": 47.464,
|
1490 |
+
"eval_steps_per_second": 1.582,
|
1491 |
+
"step": 1058
|
1492 |
+
},
|
1493 |
+
{
|
1494 |
+
"epoch": 83.13725490196079,
|
1495 |
+
"grad_norm": 7.788672924041748,
|
1496 |
+
"learning_rate": 1.4660493827160496e-05,
|
1497 |
+
"loss": 0.0594,
|
1498 |
+
"step": 1060
|
1499 |
+
},
|
1500 |
+
{
|
1501 |
+
"epoch": 83.92156862745098,
|
1502 |
+
"grad_norm": 3.5243284702301025,
|
1503 |
+
"learning_rate": 1.4274691358024692e-05,
|
1504 |
+
"loss": 0.0651,
|
1505 |
+
"step": 1070
|
1506 |
+
},
|
1507 |
+
{
|
1508 |
+
"epoch": 84.0,
|
1509 |
+
"eval_accuracy": 0.8111111111111111,
|
1510 |
+
"eval_loss": 0.6387273669242859,
|
1511 |
+
"eval_runtime": 3.9274,
|
1512 |
+
"eval_samples_per_second": 45.832,
|
1513 |
+
"eval_steps_per_second": 1.528,
|
1514 |
+
"step": 1071
|
1515 |
+
},
|
1516 |
+
{
|
1517 |
+
"epoch": 84.70588235294117,
|
1518 |
+
"grad_norm": 10.037181854248047,
|
1519 |
+
"learning_rate": 1.388888888888889e-05,
|
1520 |
+
"loss": 0.0546,
|
1521 |
+
"step": 1080
|
1522 |
+
},
|
1523 |
+
{
|
1524 |
+
"epoch": 84.94117647058823,
|
1525 |
+
"eval_accuracy": 0.8166666666666667,
|
1526 |
+
"eval_loss": 0.6861324906349182,
|
1527 |
+
"eval_runtime": 3.8238,
|
1528 |
+
"eval_samples_per_second": 47.074,
|
1529 |
+
"eval_steps_per_second": 1.569,
|
1530 |
+
"step": 1083
|
1531 |
+
},
|
1532 |
+
{
|
1533 |
+
"epoch": 85.49019607843137,
|
1534 |
+
"grad_norm": 10.713313102722168,
|
1535 |
+
"learning_rate": 1.3503086419753085e-05,
|
1536 |
+
"loss": 0.0827,
|
1537 |
+
"step": 1090
|
1538 |
+
},
|
1539 |
+
{
|
1540 |
+
"epoch": 85.96078431372548,
|
1541 |
+
"eval_accuracy": 0.8388888888888889,
|
1542 |
+
"eval_loss": 0.6072664260864258,
|
1543 |
+
"eval_runtime": 4.2373,
|
1544 |
+
"eval_samples_per_second": 42.479,
|
1545 |
+
"eval_steps_per_second": 1.416,
|
1546 |
+
"step": 1096
|
1547 |
+
},
|
1548 |
+
{
|
1549 |
+
"epoch": 86.27450980392157,
|
1550 |
+
"grad_norm": 7.2301201820373535,
|
1551 |
+
"learning_rate": 1.3117283950617285e-05,
|
1552 |
+
"loss": 0.052,
|
1553 |
+
"step": 1100
|
1554 |
+
},
|
1555 |
+
{
|
1556 |
+
"epoch": 86.98039215686275,
|
1557 |
+
"eval_accuracy": 0.85,
|
1558 |
+
"eval_loss": 0.593485951423645,
|
1559 |
+
"eval_runtime": 3.8302,
|
1560 |
+
"eval_samples_per_second": 46.995,
|
1561 |
+
"eval_steps_per_second": 1.566,
|
1562 |
+
"step": 1109
|
1563 |
+
},
|
1564 |
+
{
|
1565 |
+
"epoch": 87.05882352941177,
|
1566 |
+
"grad_norm": 4.73368501663208,
|
1567 |
+
"learning_rate": 1.2731481481481482e-05,
|
1568 |
+
"loss": 0.0442,
|
1569 |
+
"step": 1110
|
1570 |
+
},
|
1571 |
+
{
|
1572 |
+
"epoch": 87.84313725490196,
|
1573 |
+
"grad_norm": 18.29523277282715,
|
1574 |
+
"learning_rate": 1.2345679012345678e-05,
|
1575 |
+
"loss": 0.0524,
|
1576 |
+
"step": 1120
|
1577 |
+
},
|
1578 |
+
{
|
1579 |
+
"epoch": 88.0,
|
1580 |
+
"eval_accuracy": 0.8388888888888889,
|
1581 |
+
"eval_loss": 0.5899335145950317,
|
1582 |
+
"eval_runtime": 3.8551,
|
1583 |
+
"eval_samples_per_second": 46.692,
|
1584 |
+
"eval_steps_per_second": 1.556,
|
1585 |
+
"step": 1122
|
1586 |
+
},
|
1587 |
+
{
|
1588 |
+
"epoch": 88.62745098039215,
|
1589 |
+
"grad_norm": 5.7875494956970215,
|
1590 |
+
"learning_rate": 1.1959876543209878e-05,
|
1591 |
+
"loss": 0.066,
|
1592 |
+
"step": 1130
|
1593 |
+
},
|
1594 |
+
{
|
1595 |
+
"epoch": 88.94117647058823,
|
1596 |
+
"eval_accuracy": 0.8444444444444444,
|
1597 |
+
"eval_loss": 0.5954256057739258,
|
1598 |
+
"eval_runtime": 3.8582,
|
1599 |
+
"eval_samples_per_second": 46.654,
|
1600 |
+
"eval_steps_per_second": 1.555,
|
1601 |
+
"step": 1134
|
1602 |
+
},
|
1603 |
+
{
|
1604 |
+
"epoch": 89.41176470588235,
|
1605 |
+
"grad_norm": 7.960011005401611,
|
1606 |
+
"learning_rate": 1.1574074074074075e-05,
|
1607 |
+
"loss": 0.0617,
|
1608 |
+
"step": 1140
|
1609 |
+
},
|
1610 |
+
{
|
1611 |
+
"epoch": 89.96078431372548,
|
1612 |
+
"eval_accuracy": 0.8444444444444444,
|
1613 |
+
"eval_loss": 0.6145300269126892,
|
1614 |
+
"eval_runtime": 3.8594,
|
1615 |
+
"eval_samples_per_second": 46.639,
|
1616 |
+
"eval_steps_per_second": 1.555,
|
1617 |
+
"step": 1147
|
1618 |
+
},
|
1619 |
+
{
|
1620 |
+
"epoch": 90.19607843137256,
|
1621 |
+
"grad_norm": 5.9040350914001465,
|
1622 |
+
"learning_rate": 1.1188271604938271e-05,
|
1623 |
+
"loss": 0.0373,
|
1624 |
+
"step": 1150
|
1625 |
+
},
|
1626 |
+
{
|
1627 |
+
"epoch": 90.98039215686275,
|
1628 |
+
"grad_norm": 7.361179828643799,
|
1629 |
+
"learning_rate": 1.0802469135802469e-05,
|
1630 |
+
"loss": 0.0572,
|
1631 |
+
"step": 1160
|
1632 |
+
},
|
1633 |
+
{
|
1634 |
+
"epoch": 90.98039215686275,
|
1635 |
+
"eval_accuracy": 0.8444444444444444,
|
1636 |
+
"eval_loss": 0.6176372766494751,
|
1637 |
+
"eval_runtime": 3.825,
|
1638 |
+
"eval_samples_per_second": 47.059,
|
1639 |
+
"eval_steps_per_second": 1.569,
|
1640 |
+
"step": 1160
|
1641 |
+
},
|
1642 |
+
{
|
1643 |
+
"epoch": 91.76470588235294,
|
1644 |
+
"grad_norm": 14.031915664672852,
|
1645 |
+
"learning_rate": 1.0416666666666668e-05,
|
1646 |
+
"loss": 0.0719,
|
1647 |
+
"step": 1170
|
1648 |
+
},
|
1649 |
+
{
|
1650 |
+
"epoch": 92.0,
|
1651 |
+
"eval_accuracy": 0.8277777777777777,
|
1652 |
+
"eval_loss": 0.6406115889549255,
|
1653 |
+
"eval_runtime": 3.7626,
|
1654 |
+
"eval_samples_per_second": 47.839,
|
1655 |
+
"eval_steps_per_second": 1.595,
|
1656 |
+
"step": 1173
|
1657 |
+
},
|
1658 |
+
{
|
1659 |
+
"epoch": 92.54901960784314,
|
1660 |
+
"grad_norm": 12.152432441711426,
|
1661 |
+
"learning_rate": 1.0030864197530866e-05,
|
1662 |
+
"loss": 0.0734,
|
1663 |
+
"step": 1180
|
1664 |
+
},
|
1665 |
+
{
|
1666 |
+
"epoch": 92.94117647058823,
|
1667 |
+
"eval_accuracy": 0.8333333333333334,
|
1668 |
+
"eval_loss": 0.6484689712524414,
|
1669 |
+
"eval_runtime": 3.8146,
|
1670 |
+
"eval_samples_per_second": 47.187,
|
1671 |
+
"eval_steps_per_second": 1.573,
|
1672 |
+
"step": 1185
|
1673 |
+
},
|
1674 |
+
{
|
1675 |
+
"epoch": 93.33333333333333,
|
1676 |
+
"grad_norm": 7.38240385055542,
|
1677 |
+
"learning_rate": 9.645061728395062e-06,
|
1678 |
+
"loss": 0.0616,
|
1679 |
+
"step": 1190
|
1680 |
+
},
|
1681 |
+
{
|
1682 |
+
"epoch": 93.96078431372548,
|
1683 |
+
"eval_accuracy": 0.8333333333333334,
|
1684 |
+
"eval_loss": 0.619816243648529,
|
1685 |
+
"eval_runtime": 3.8069,
|
1686 |
+
"eval_samples_per_second": 47.282,
|
1687 |
+
"eval_steps_per_second": 1.576,
|
1688 |
+
"step": 1198
|
1689 |
+
},
|
1690 |
+
{
|
1691 |
+
"epoch": 94.11764705882354,
|
1692 |
+
"grad_norm": 15.435483932495117,
|
1693 |
+
"learning_rate": 9.259259259259259e-06,
|
1694 |
+
"loss": 0.047,
|
1695 |
+
"step": 1200
|
1696 |
+
},
|
1697 |
+
{
|
1698 |
+
"epoch": 94.90196078431373,
|
1699 |
+
"grad_norm": 3.8711276054382324,
|
1700 |
+
"learning_rate": 8.873456790123458e-06,
|
1701 |
+
"loss": 0.0557,
|
1702 |
+
"step": 1210
|
1703 |
+
},
|
1704 |
+
{
|
1705 |
+
"epoch": 94.98039215686275,
|
1706 |
+
"eval_accuracy": 0.8388888888888889,
|
1707 |
+
"eval_loss": 0.6167161464691162,
|
1708 |
+
"eval_runtime": 3.7712,
|
1709 |
+
"eval_samples_per_second": 47.73,
|
1710 |
+
"eval_steps_per_second": 1.591,
|
1711 |
+
"step": 1211
|
1712 |
+
},
|
1713 |
+
{
|
1714 |
+
"epoch": 95.68627450980392,
|
1715 |
+
"grad_norm": 6.233323574066162,
|
1716 |
+
"learning_rate": 8.487654320987654e-06,
|
1717 |
+
"loss": 0.0494,
|
1718 |
+
"step": 1220
|
1719 |
+
},
|
1720 |
+
{
|
1721 |
+
"epoch": 96.0,
|
1722 |
+
"eval_accuracy": 0.8444444444444444,
|
1723 |
+
"eval_loss": 0.6479634642601013,
|
1724 |
+
"eval_runtime": 3.8139,
|
1725 |
+
"eval_samples_per_second": 47.196,
|
1726 |
+
"eval_steps_per_second": 1.573,
|
1727 |
+
"step": 1224
|
1728 |
+
},
|
1729 |
+
{
|
1730 |
+
"epoch": 96.47058823529412,
|
1731 |
+
"grad_norm": 2.76275897026062,
|
1732 |
+
"learning_rate": 8.101851851851852e-06,
|
1733 |
+
"loss": 0.0587,
|
1734 |
+
"step": 1230
|
1735 |
+
},
|
1736 |
+
{
|
1737 |
+
"epoch": 96.94117647058823,
|
1738 |
+
"eval_accuracy": 0.85,
|
1739 |
+
"eval_loss": 0.6075512170791626,
|
1740 |
+
"eval_runtime": 3.8781,
|
1741 |
+
"eval_samples_per_second": 46.414,
|
1742 |
+
"eval_steps_per_second": 1.547,
|
1743 |
+
"step": 1236
|
1744 |
+
},
|
1745 |
+
{
|
1746 |
+
"epoch": 97.25490196078431,
|
1747 |
+
"grad_norm": 6.258754730224609,
|
1748 |
+
"learning_rate": 7.71604938271605e-06,
|
1749 |
+
"loss": 0.052,
|
1750 |
+
"step": 1240
|
1751 |
+
},
|
1752 |
+
{
|
1753 |
+
"epoch": 97.96078431372548,
|
1754 |
+
"eval_accuracy": 0.8388888888888889,
|
1755 |
+
"eval_loss": 0.6511959433555603,
|
1756 |
+
"eval_runtime": 3.7767,
|
1757 |
+
"eval_samples_per_second": 47.661,
|
1758 |
+
"eval_steps_per_second": 1.589,
|
1759 |
+
"step": 1249
|
1760 |
+
},
|
1761 |
+
{
|
1762 |
+
"epoch": 98.03921568627452,
|
1763 |
+
"grad_norm": 2.6569933891296387,
|
1764 |
+
"learning_rate": 7.330246913580248e-06,
|
1765 |
+
"loss": 0.0511,
|
1766 |
+
"step": 1250
|
1767 |
+
},
|
1768 |
+
{
|
1769 |
+
"epoch": 98.82352941176471,
|
1770 |
+
"grad_norm": 6.5559306144714355,
|
1771 |
+
"learning_rate": 6.944444444444445e-06,
|
1772 |
+
"loss": 0.0383,
|
1773 |
+
"step": 1260
|
1774 |
+
},
|
1775 |
+
{
|
1776 |
+
"epoch": 98.98039215686275,
|
1777 |
+
"eval_accuracy": 0.8333333333333334,
|
1778 |
+
"eval_loss": 0.6781744360923767,
|
1779 |
+
"eval_runtime": 3.7667,
|
1780 |
+
"eval_samples_per_second": 47.787,
|
1781 |
+
"eval_steps_per_second": 1.593,
|
1782 |
+
"step": 1262
|
1783 |
+
},
|
1784 |
+
{
|
1785 |
+
"epoch": 99.6078431372549,
|
1786 |
+
"grad_norm": 2.813370704650879,
|
1787 |
+
"learning_rate": 6.558641975308642e-06,
|
1788 |
+
"loss": 0.0499,
|
1789 |
+
"step": 1270
|
1790 |
+
},
|
1791 |
+
{
|
1792 |
+
"epoch": 100.0,
|
1793 |
+
"eval_accuracy": 0.8277777777777777,
|
1794 |
+
"eval_loss": 0.6542291641235352,
|
1795 |
+
"eval_runtime": 3.8026,
|
1796 |
+
"eval_samples_per_second": 47.337,
|
1797 |
+
"eval_steps_per_second": 1.578,
|
1798 |
+
"step": 1275
|
1799 |
+
},
|
1800 |
+
{
|
1801 |
+
"epoch": 100.3921568627451,
|
1802 |
+
"grad_norm": 16.95922088623047,
|
1803 |
+
"learning_rate": 6.172839506172839e-06,
|
1804 |
+
"loss": 0.0511,
|
1805 |
+
"step": 1280
|
1806 |
+
},
|
1807 |
+
{
|
1808 |
+
"epoch": 100.94117647058823,
|
1809 |
+
"eval_accuracy": 0.8388888888888889,
|
1810 |
+
"eval_loss": 0.6794776320457458,
|
1811 |
+
"eval_runtime": 3.8468,
|
1812 |
+
"eval_samples_per_second": 46.793,
|
1813 |
+
"eval_steps_per_second": 1.56,
|
1814 |
+
"step": 1287
|
1815 |
+
},
|
1816 |
+
{
|
1817 |
+
"epoch": 101.17647058823529,
|
1818 |
+
"grad_norm": 15.969926834106445,
|
1819 |
+
"learning_rate": 5.787037037037038e-06,
|
1820 |
+
"loss": 0.0527,
|
1821 |
+
"step": 1290
|
1822 |
+
},
|
1823 |
+
{
|
1824 |
+
"epoch": 101.96078431372548,
|
1825 |
+
"grad_norm": 15.459400177001953,
|
1826 |
+
"learning_rate": 5.401234567901234e-06,
|
1827 |
+
"loss": 0.0452,
|
1828 |
+
"step": 1300
|
1829 |
+
},
|
1830 |
+
{
|
1831 |
+
"epoch": 101.96078431372548,
|
1832 |
+
"eval_accuracy": 0.8333333333333334,
|
1833 |
+
"eval_loss": 0.6739789247512817,
|
1834 |
+
"eval_runtime": 3.7395,
|
1835 |
+
"eval_samples_per_second": 48.135,
|
1836 |
+
"eval_steps_per_second": 1.605,
|
1837 |
+
"step": 1300
|
1838 |
+
},
|
1839 |
+
{
|
1840 |
+
"epoch": 102.74509803921569,
|
1841 |
+
"grad_norm": 5.437152862548828,
|
1842 |
+
"learning_rate": 5.015432098765433e-06,
|
1843 |
+
"loss": 0.0475,
|
1844 |
+
"step": 1310
|
1845 |
+
},
|
1846 |
+
{
|
1847 |
+
"epoch": 102.98039215686275,
|
1848 |
+
"eval_accuracy": 0.8388888888888889,
|
1849 |
+
"eval_loss": 0.6615740656852722,
|
1850 |
+
"eval_runtime": 3.7883,
|
1851 |
+
"eval_samples_per_second": 47.515,
|
1852 |
+
"eval_steps_per_second": 1.584,
|
1853 |
+
"step": 1313
|
1854 |
+
},
|
1855 |
+
{
|
1856 |
+
"epoch": 103.52941176470588,
|
1857 |
+
"grad_norm": 12.730355262756348,
|
1858 |
+
"learning_rate": 4.6296296296296296e-06,
|
1859 |
+
"loss": 0.0455,
|
1860 |
+
"step": 1320
|
1861 |
+
},
|
1862 |
+
{
|
1863 |
+
"epoch": 104.0,
|
1864 |
+
"eval_accuracy": 0.8277777777777777,
|
1865 |
+
"eval_loss": 0.6490476131439209,
|
1866 |
+
"eval_runtime": 3.8157,
|
1867 |
+
"eval_samples_per_second": 47.173,
|
1868 |
+
"eval_steps_per_second": 1.572,
|
1869 |
+
"step": 1326
|
1870 |
+
},
|
1871 |
+
{
|
1872 |
+
"epoch": 104.31372549019608,
|
1873 |
+
"grad_norm": 10.348357200622559,
|
1874 |
+
"learning_rate": 4.243827160493827e-06,
|
1875 |
+
"loss": 0.0486,
|
1876 |
+
"step": 1330
|
1877 |
+
},
|
1878 |
+
{
|
1879 |
+
"epoch": 104.94117647058823,
|
1880 |
+
"eval_accuracy": 0.8333333333333334,
|
1881 |
+
"eval_loss": 0.6331196427345276,
|
1882 |
+
"eval_runtime": 3.7919,
|
1883 |
+
"eval_samples_per_second": 47.469,
|
1884 |
+
"eval_steps_per_second": 1.582,
|
1885 |
+
"step": 1338
|
1886 |
+
},
|
1887 |
+
{
|
1888 |
+
"epoch": 105.09803921568627,
|
1889 |
+
"grad_norm": 16.444259643554688,
|
1890 |
+
"learning_rate": 3.858024691358025e-06,
|
1891 |
+
"loss": 0.0442,
|
1892 |
+
"step": 1340
|
1893 |
+
},
|
1894 |
+
{
|
1895 |
+
"epoch": 105.88235294117646,
|
1896 |
+
"grad_norm": 7.596277236938477,
|
1897 |
+
"learning_rate": 3.4722222222222224e-06,
|
1898 |
+
"loss": 0.0585,
|
1899 |
+
"step": 1350
|
1900 |
+
},
|
1901 |
+
{
|
1902 |
+
"epoch": 105.96078431372548,
|
1903 |
+
"eval_accuracy": 0.8333333333333334,
|
1904 |
+
"eval_loss": 0.6298839449882507,
|
1905 |
+
"eval_runtime": 3.7758,
|
1906 |
+
"eval_samples_per_second": 47.672,
|
1907 |
+
"eval_steps_per_second": 1.589,
|
1908 |
+
"step": 1351
|
1909 |
+
},
|
1910 |
+
{
|
1911 |
+
"epoch": 106.66666666666667,
|
1912 |
+
"grad_norm": 13.853099822998047,
|
1913 |
+
"learning_rate": 3.0864197530864196e-06,
|
1914 |
+
"loss": 0.0549,
|
1915 |
+
"step": 1360
|
1916 |
+
},
|
1917 |
+
{
|
1918 |
+
"epoch": 106.98039215686275,
|
1919 |
+
"eval_accuracy": 0.8277777777777777,
|
1920 |
+
"eval_loss": 0.6397578120231628,
|
1921 |
+
"eval_runtime": 3.7676,
|
1922 |
+
"eval_samples_per_second": 47.776,
|
1923 |
+
"eval_steps_per_second": 1.593,
|
1924 |
+
"step": 1364
|
1925 |
+
},
|
1926 |
+
{
|
1927 |
+
"epoch": 107.45098039215686,
|
1928 |
+
"grad_norm": 10.11983871459961,
|
1929 |
+
"learning_rate": 2.700617283950617e-06,
|
1930 |
+
"loss": 0.0436,
|
1931 |
+
"step": 1370
|
1932 |
+
},
|
1933 |
+
{
|
1934 |
+
"epoch": 108.0,
|
1935 |
+
"eval_accuracy": 0.8444444444444444,
|
1936 |
+
"eval_loss": 0.6338447332382202,
|
1937 |
+
"eval_runtime": 3.8768,
|
1938 |
+
"eval_samples_per_second": 46.43,
|
1939 |
+
"eval_steps_per_second": 1.548,
|
1940 |
+
"step": 1377
|
1941 |
+
},
|
1942 |
+
{
|
1943 |
+
"epoch": 108.23529411764706,
|
1944 |
+
"grad_norm": 7.749964237213135,
|
1945 |
+
"learning_rate": 2.3148148148148148e-06,
|
1946 |
+
"loss": 0.0429,
|
1947 |
+
"step": 1380
|
1948 |
+
},
|
1949 |
+
{
|
1950 |
+
"epoch": 108.94117647058823,
|
1951 |
+
"eval_accuracy": 0.8388888888888889,
|
1952 |
+
"eval_loss": 0.6458715796470642,
|
1953 |
+
"eval_runtime": 3.7687,
|
1954 |
+
"eval_samples_per_second": 47.762,
|
1955 |
+
"eval_steps_per_second": 1.592,
|
1956 |
+
"step": 1389
|
1957 |
+
},
|
1958 |
+
{
|
1959 |
+
"epoch": 109.01960784313725,
|
1960 |
+
"grad_norm": 5.384810447692871,
|
1961 |
+
"learning_rate": 1.9290123456790124e-06,
|
1962 |
+
"loss": 0.047,
|
1963 |
+
"step": 1390
|
1964 |
+
},
|
1965 |
+
{
|
1966 |
+
"epoch": 109.80392156862744,
|
1967 |
+
"grad_norm": 14.666231155395508,
|
1968 |
+
"learning_rate": 1.5432098765432098e-06,
|
1969 |
+
"loss": 0.0449,
|
1970 |
+
"step": 1400
|
1971 |
+
},
|
1972 |
+
{
|
1973 |
+
"epoch": 109.96078431372548,
|
1974 |
+
"eval_accuracy": 0.8444444444444444,
|
1975 |
+
"eval_loss": 0.6469634175300598,
|
1976 |
+
"eval_runtime": 3.785,
|
1977 |
+
"eval_samples_per_second": 47.556,
|
1978 |
+
"eval_steps_per_second": 1.585,
|
1979 |
+
"step": 1402
|
1980 |
+
},
|
1981 |
+
{
|
1982 |
+
"epoch": 110.58823529411765,
|
1983 |
+
"grad_norm": 11.94315242767334,
|
1984 |
+
"learning_rate": 1.1574074074074074e-06,
|
1985 |
+
"loss": 0.0559,
|
1986 |
+
"step": 1410
|
1987 |
+
},
|
1988 |
+
{
|
1989 |
+
"epoch": 110.98039215686275,
|
1990 |
+
"eval_accuracy": 0.8388888888888889,
|
1991 |
+
"eval_loss": 0.646262526512146,
|
1992 |
+
"eval_runtime": 3.8809,
|
1993 |
+
"eval_samples_per_second": 46.381,
|
1994 |
+
"eval_steps_per_second": 1.546,
|
1995 |
+
"step": 1415
|
1996 |
+
},
|
1997 |
+
{
|
1998 |
+
"epoch": 111.37254901960785,
|
1999 |
+
"grad_norm": 8.830354690551758,
|
2000 |
+
"learning_rate": 7.716049382716049e-07,
|
2001 |
+
"loss": 0.0378,
|
2002 |
+
"step": 1420
|
2003 |
+
},
|
2004 |
+
{
|
2005 |
+
"epoch": 112.0,
|
2006 |
+
"eval_accuracy": 0.8388888888888889,
|
2007 |
+
"eval_loss": 0.6480041742324829,
|
2008 |
+
"eval_runtime": 3.8373,
|
2009 |
+
"eval_samples_per_second": 46.908,
|
2010 |
+
"eval_steps_per_second": 1.564,
|
2011 |
+
"step": 1428
|
2012 |
+
},
|
2013 |
+
{
|
2014 |
+
"epoch": 112.15686274509804,
|
2015 |
+
"grad_norm": 16.867820739746094,
|
2016 |
+
"learning_rate": 3.8580246913580245e-07,
|
2017 |
+
"loss": 0.0509,
|
2018 |
+
"step": 1430
|
2019 |
+
},
|
2020 |
+
{
|
2021 |
+
"epoch": 112.94117647058823,
|
2022 |
+
"grad_norm": 13.072942733764648,
|
2023 |
+
"learning_rate": 0.0,
|
2024 |
+
"loss": 0.0476,
|
2025 |
+
"step": 1440
|
2026 |
+
},
|
2027 |
+
{
|
2028 |
+
"epoch": 112.94117647058823,
|
2029 |
+
"eval_accuracy": 0.8388888888888889,
|
2030 |
+
"eval_loss": 0.6477780342102051,
|
2031 |
+
"eval_runtime": 3.8103,
|
2032 |
+
"eval_samples_per_second": 47.24,
|
2033 |
+
"eval_steps_per_second": 1.575,
|
2034 |
+
"step": 1440
|
2035 |
+
},
|
2036 |
+
{
|
2037 |
+
"epoch": 112.94117647058823,
|
2038 |
+
"step": 1440,
|
2039 |
+
"total_flos": 4.607069541812011e+18,
|
2040 |
+
"train_loss": 0.33674598841203585,
|
2041 |
+
"train_runtime": 5395.5485,
|
2042 |
+
"train_samples_per_second": 36.03,
|
2043 |
+
"train_steps_per_second": 0.267
|
2044 |
+
}
|
2045 |
+
],
|
2046 |
+
"logging_steps": 10,
|
2047 |
+
"max_steps": 1440,
|
2048 |
+
"num_input_tokens_seen": 0,
|
2049 |
+
"num_train_epochs": 120,
|
2050 |
+
"save_steps": 500,
|
2051 |
+
"stateful_callbacks": {
|
2052 |
+
"TrainerControl": {
|
2053 |
+
"args": {
|
2054 |
+
"should_epoch_stop": false,
|
2055 |
+
"should_evaluate": false,
|
2056 |
+
"should_log": false,
|
2057 |
+
"should_save": false,
|
2058 |
+
"should_training_stop": false
|
2059 |
+
},
|
2060 |
+
"attributes": {}
|
2061 |
+
}
|
2062 |
+
},
|
2063 |
+
"total_flos": 4.607069541812011e+18,
|
2064 |
+
"train_batch_size": 32,
|
2065 |
+
"trial_name": null,
|
2066 |
+
"trial_params": null
|
2067 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0ffe697454969fea42d8c94b5e89fcef1b5d6a8daae4cb3b569683e18b42b2bd
|
3 |
+
size 5240
|