metadata
base_model: liddlefish/privacy_embedding_rag_10k_base_checkpoint_2
language:
- en
library_name: sentence-transformers
license: apache-2.0
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- dataset_size:1K<n<10K
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: Żywot św. Stanisława
sentences:
- czym różni się Żywot św. Stanisława od Legendy św. Stanisława?
- czemu gra The Saboteur wywołała wiele kontrowersji?
- Muzykę do obrazu skomponowali Marco Frisina i Ennio Morricone.
- source_sentence: Jaakow Jicchak Szapira
sentences:
- cadykiem którego miasta był Jaakow Jicchak Dan Landau?
- gdzie zginął przedwojenny minister Antoni Olszewski?
- ' W 1867 oddano do użytku Kolej Warszawsko-Terespolską (całą linię).'
- source_sentence: Chłopiec z Nariokotome
sentences:
- ile wynosiła objętość mózgu chłopca z Nariokotome?
- czemu gra The Saboteur wywołała wiele kontrowersji?
- Akcja powieści rozgrywa się w XV-wiecznej Polsce.
- source_sentence: Stany Zjednoczone Polski
sentences:
- kiedy miały szansę powstać Stany Zjednoczone Polski?
- z jakiego powodu Chloé wywołała skandal w Melbourne?
- komu przysługiwał tytuł autokratora?
- source_sentence: Sen o zastrzyku Irmy
sentences:
- gdzie Freud spotkał Irmę we śnie o zastrzyku Irmy?
- dlaczego Ōkunoshima została wymazana z map Japonii?
- który samochód wyglądem nawiązuje do Mercedesa-Benza SLS AMG?
model-index:
- name: privacy_embedding_rag_10k_base_checkpoint_2-klej-dyk-v0.1
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.1875
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.4543269230769231
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.6225961538461539
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.7307692307692307
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.1875
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.15144230769230768
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.12451923076923076
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.07307692307692307
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.1875
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.4543269230769231
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.6225961538461539
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.7307692307692307
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.4453345212200682
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.35500896672771654
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.36239083059244687
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.18269230769230768
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.44471153846153844
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.6033653846153846
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.7115384615384616
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.18269230769230768
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.14823717948717946
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.12067307692307691
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.07115384615384614
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.18269230769230768
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.44471153846153844
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.6033653846153846
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.7115384615384616
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.43488982498130374
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.347151633089133
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.3548109777991144
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.1875
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.4230769230769231
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.5576923076923077
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.6682692307692307
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.1875
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.14102564102564102
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.11153846153846153
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.06682692307692308
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.1875
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.4230769230769231
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.5576923076923077
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.6682692307692307
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.41398239515933494
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.3336862789987789
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.3427233175204077
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.17067307692307693
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.36778846153846156
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.5120192307692307
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.6009615384615384
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.17067307692307693
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.12259615384615384
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.10240384615384614
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.06009615384615385
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.17067307692307693
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.36778846153846156
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.5120192307692307
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.6009615384615384
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.371201964014572
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.2987818605006104
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.3066873839005868
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.15865384615384615
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.31009615384615385
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.3870192307692308
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.49278846153846156
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.15865384615384615
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.10336538461538461
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.07740384615384616
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.04927884615384615
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.15865384615384615
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.31009615384615385
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.3870192307692308
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.49278846153846156
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.3130531482964966
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.2569225045787546
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.2651139739879426
name: Cosine Map@100
privacy_embedding_rag_10k_base_checkpoint_2-klej-dyk-v0.1
This is a sentence-transformers model finetuned from liddlefish/privacy_embedding_rag_10k_base_checkpoint_2. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("sentence_transformers_model_id")
sentences = [
'Sen o zastrzyku Irmy',
'gdzie Freud spotkał Irmę we śnie o zastrzyku Irmy?',
'dlaczego Ōkunoshima została wymazana z map Japonii?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.1875 |
cosine_accuracy@3 |
0.4543 |
cosine_accuracy@5 |
0.6226 |
cosine_accuracy@10 |
0.7308 |
cosine_precision@1 |
0.1875 |
cosine_precision@3 |
0.1514 |
cosine_precision@5 |
0.1245 |
cosine_precision@10 |
0.0731 |
cosine_recall@1 |
0.1875 |
cosine_recall@3 |
0.4543 |
cosine_recall@5 |
0.6226 |
cosine_recall@10 |
0.7308 |
cosine_ndcg@10 |
0.4453 |
cosine_mrr@10 |
0.355 |
cosine_map@100 |
0.3624 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.1827 |
cosine_accuracy@3 |
0.4447 |
cosine_accuracy@5 |
0.6034 |
cosine_accuracy@10 |
0.7115 |
cosine_precision@1 |
0.1827 |
cosine_precision@3 |
0.1482 |
cosine_precision@5 |
0.1207 |
cosine_precision@10 |
0.0712 |
cosine_recall@1 |
0.1827 |
cosine_recall@3 |
0.4447 |
cosine_recall@5 |
0.6034 |
cosine_recall@10 |
0.7115 |
cosine_ndcg@10 |
0.4349 |
cosine_mrr@10 |
0.3472 |
cosine_map@100 |
0.3548 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.1875 |
cosine_accuracy@3 |
0.4231 |
cosine_accuracy@5 |
0.5577 |
cosine_accuracy@10 |
0.6683 |
cosine_precision@1 |
0.1875 |
cosine_precision@3 |
0.141 |
cosine_precision@5 |
0.1115 |
cosine_precision@10 |
0.0668 |
cosine_recall@1 |
0.1875 |
cosine_recall@3 |
0.4231 |
cosine_recall@5 |
0.5577 |
cosine_recall@10 |
0.6683 |
cosine_ndcg@10 |
0.414 |
cosine_mrr@10 |
0.3337 |
cosine_map@100 |
0.3427 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.1707 |
cosine_accuracy@3 |
0.3678 |
cosine_accuracy@5 |
0.512 |
cosine_accuracy@10 |
0.601 |
cosine_precision@1 |
0.1707 |
cosine_precision@3 |
0.1226 |
cosine_precision@5 |
0.1024 |
cosine_precision@10 |
0.0601 |
cosine_recall@1 |
0.1707 |
cosine_recall@3 |
0.3678 |
cosine_recall@5 |
0.512 |
cosine_recall@10 |
0.601 |
cosine_ndcg@10 |
0.3712 |
cosine_mrr@10 |
0.2988 |
cosine_map@100 |
0.3067 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.1587 |
cosine_accuracy@3 |
0.3101 |
cosine_accuracy@5 |
0.387 |
cosine_accuracy@10 |
0.4928 |
cosine_precision@1 |
0.1587 |
cosine_precision@3 |
0.1034 |
cosine_precision@5 |
0.0774 |
cosine_precision@10 |
0.0493 |
cosine_recall@1 |
0.1587 |
cosine_recall@3 |
0.3101 |
cosine_recall@5 |
0.387 |
cosine_recall@10 |
0.4928 |
cosine_ndcg@10 |
0.3131 |
cosine_mrr@10 |
0.2569 |
cosine_map@100 |
0.2651 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 3,738 training samples
- Columns:
positive
and anchor
- Approximate statistics based on the first 1000 samples:
|
positive |
anchor |
type |
string |
string |
details |
- min: 7 tokens
- mean: 89.43 tokens
- max: 507 tokens
|
- min: 9 tokens
- mean: 30.98 tokens
- max: 76 tokens
|
- Samples:
positive |
anchor |
Zespół Blaua (zespół Jabsa, ang. Blau syndrome, BS) – rzadka choroba genetyczna o dziedziczeniu autosomalnym dominującym, charakteryzująca się ziarniniakowym zapaleniem stawów o wczesnym początku, zapaleniem jagodówki (uveitis) i wysypką skórną, a także kamptodaktylią. |
jakie choroby genetyczne dziedziczą się autosomalnie dominująco? |
Gorgippia Gorgippia – starożytne miasto bosporańskie nad Morzem Czarnym, którego pozostałości znajdują się obecnie pod współczesną zabudową centralnej części miasta Anapa w Kraju Krasnodarskim w Rosji. |
gdzie obecnie znajduje się starożytne miasto Gorgippia? |
Ulubionym dystansem Rücker było 400 metrów i to na nim notowała największe indywidualne sukcesy : srebrny medal Mistrzostw Europy juniorów w lekkoatletyce (Saloniki 1991) 6. miejsce w Pucharze Świata w Lekkoatletyce (Hawana 1992) 5. miejsce na Mistrzostwach Europy w Lekkoatletyce (Helsinki 1994) srebro podczas Mistrzostw Świata w Lekkoatletyce (Sewilla 1999) złota medalistka mistrzostw Niemiec Duże sukcesy odnosiła także w sztafecie 4 x 400 metrów : złoto Mistrzostw Europy juniorów w lekkoatletyce (Varaždin 1989) złoty medal Mistrzostw Europy juniorów w lekkoatletyce (Saloniki 1991) brąz na Mistrzostwach Europy w Lekkoatletyce (Helsinki 1994) brązowy medal podczas Igrzysk Olimpijskich (Atlanta 1996) brąz na Halowych Mistrzostwach Świata w Lekkoatletyce (Paryż 1997) złoto Mistrzostw Świata w Lekkoatletyce (Ateny 1997) brązowy medal Mistrzostw Świata w Lekkoatletyce (Sewilla 1999) |
kto zaprojektował medale, które będą wręczane podczas tegorocznych mistrzostw Europy juniorów w lekkoatletyce? |
- Loss:
MatryoshkaLoss
with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epoch
per_device_train_batch_size
: 16
per_device_eval_batch_size
: 16
gradient_accumulation_steps
: 16
learning_rate
: 2e-05
num_train_epochs
: 5
lr_scheduler_type
: cosine
warmup_ratio
: 0.1
bf16
: True
tf32
: True
load_best_model_at_end
: True
optim
: adamw_torch_fused
batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
eval_strategy
: epoch
prediction_loss_only
: True
per_device_train_batch_size
: 16
per_device_eval_batch_size
: 16
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 16
eval_accumulation_steps
: None
learning_rate
: 2e-05
weight_decay
: 0.0
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 5
max_steps
: -1
lr_scheduler_type
: cosine
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.1
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: True
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
restore_callback_states_from_checkpoint
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: True
fp16
: False
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: True
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: False
dataloader_num_workers
: 0
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: True
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch_fused
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: None
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: False
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: False
hub_always_push
: False
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
dispatch_batches
: None
split_batches
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_eval_metrics
: False
batch_sampler
: no_duplicates
multi_dataset_batch_sampler
: proportional
Training Logs
Epoch |
Step |
Training Loss |
dim_128_cosine_map@100 |
dim_256_cosine_map@100 |
dim_512_cosine_map@100 |
dim_64_cosine_map@100 |
dim_768_cosine_map@100 |
0.0684 |
1 |
9.112 |
- |
- |
- |
- |
- |
0.1368 |
2 |
9.5133 |
- |
- |
- |
- |
- |
0.2051 |
3 |
9.0946 |
- |
- |
- |
- |
- |
0.2735 |
4 |
8.9744 |
- |
- |
- |
- |
- |
0.3419 |
5 |
7.9039 |
- |
- |
- |
- |
- |
0.4103 |
6 |
8.1973 |
- |
- |
- |
- |
- |
0.4786 |
7 |
6.8979 |
- |
- |
- |
- |
- |
0.5470 |
8 |
7.0324 |
- |
- |
- |
- |
- |
0.6154 |
9 |
6.6472 |
- |
- |
- |
- |
- |
0.6838 |
10 |
6.3009 |
- |
- |
- |
- |
- |
0.7521 |
11 |
6.8778 |
- |
- |
- |
- |
- |
0.8205 |
12 |
5.9809 |
- |
- |
- |
- |
- |
0.8889 |
13 |
5.3054 |
- |
- |
- |
- |
- |
0.9573 |
14 |
5.706 |
0.2868 |
0.3280 |
0.3522 |
0.2415 |
0.3477 |
1.0256 |
15 |
5.0592 |
- |
- |
- |
- |
- |
1.0940 |
16 |
4.7655 |
- |
- |
- |
- |
- |
1.1624 |
17 |
4.9682 |
- |
- |
- |
- |
- |
1.2308 |
18 |
5.1226 |
- |
- |
- |
- |
- |
1.2991 |
19 |
4.8655 |
- |
- |
- |
- |
- |
1.3675 |
20 |
4.2008 |
- |
- |
- |
- |
- |
1.4359 |
21 |
5.0281 |
- |
- |
- |
- |
- |
1.5043 |
22 |
4.3074 |
- |
- |
- |
- |
- |
1.5726 |
23 |
4.3163 |
- |
- |
- |
- |
- |
1.6410 |
24 |
3.9344 |
- |
- |
- |
- |
- |
1.7094 |
25 |
4.6567 |
- |
- |
- |
- |
- |
1.7778 |
26 |
4.5145 |
- |
- |
- |
- |
- |
1.8462 |
27 |
4.1319 |
- |
- |
- |
- |
- |
1.9145 |
28 |
3.8768 |
- |
- |
- |
- |
- |
1.9829 |
29 |
3.5525 |
0.2986 |
0.3330 |
0.3483 |
0.2590 |
0.3534 |
2.0513 |
30 |
3.8693 |
- |
- |
- |
- |
- |
2.1197 |
31 |
3.4675 |
- |
- |
- |
- |
- |
2.1880 |
32 |
4.0598 |
- |
- |
- |
- |
- |
2.2564 |
33 |
4.2429 |
- |
- |
- |
- |
- |
2.3248 |
34 |
3.3686 |
- |
- |
- |
- |
- |
2.3932 |
35 |
3.2663 |
- |
- |
- |
- |
- |
2.4615 |
36 |
3.8585 |
- |
- |
- |
- |
- |
2.5299 |
37 |
3.1157 |
- |
- |
- |
- |
- |
2.5983 |
38 |
3.5254 |
- |
- |
- |
- |
- |
2.6667 |
39 |
3.2782 |
- |
- |
- |
- |
- |
2.7350 |
40 |
4.3151 |
- |
- |
- |
- |
- |
2.8034 |
41 |
3.4567 |
- |
- |
- |
- |
- |
2.8718 |
42 |
3.3976 |
- |
- |
- |
- |
- |
2.9402 |
43 |
3.3945 |
0.3014 |
0.3343 |
0.3522 |
0.2626 |
0.3593 |
3.0085 |
44 |
3.4487 |
- |
- |
- |
- |
- |
3.0769 |
45 |
3.0021 |
- |
- |
- |
- |
- |
3.1453 |
46 |
3.2332 |
- |
- |
- |
- |
- |
3.2137 |
47 |
3.3012 |
- |
- |
- |
- |
- |
3.2821 |
48 |
3.2735 |
- |
- |
- |
- |
- |
3.3504 |
49 |
2.5335 |
- |
- |
- |
- |
- |
3.4188 |
50 |
3.7025 |
- |
- |
- |
- |
- |
3.4872 |
51 |
2.8596 |
- |
- |
- |
- |
- |
3.5556 |
52 |
3.1108 |
- |
- |
- |
- |
- |
3.6239 |
53 |
3.2807 |
- |
- |
- |
- |
- |
3.6923 |
54 |
3.1604 |
- |
- |
- |
- |
- |
3.7607 |
55 |
3.7179 |
- |
- |
- |
- |
- |
3.8291 |
56 |
3.3418 |
- |
- |
- |
- |
- |
3.8974 |
57 |
2.9735 |
- |
- |
- |
- |
- |
3.9658 |
58 |
3.2755 |
0.3066 |
0.3409 |
0.3546 |
0.2653 |
0.3626 |
4.0342 |
59 |
3.1444 |
- |
- |
- |
- |
- |
4.1026 |
60 |
3.0212 |
- |
- |
- |
- |
- |
4.1709 |
61 |
3.1298 |
- |
- |
- |
- |
- |
4.2393 |
62 |
3.3195 |
- |
- |
- |
- |
- |
4.3077 |
63 |
2.996 |
- |
- |
- |
- |
- |
4.3761 |
64 |
2.4636 |
- |
- |
- |
- |
- |
4.4444 |
65 |
3.2388 |
- |
- |
- |
- |
- |
4.5128 |
66 |
2.747 |
- |
- |
- |
- |
- |
4.5812 |
67 |
2.8715 |
- |
- |
- |
- |
- |
4.6496 |
68 |
3.1402 |
- |
- |
- |
- |
- |
4.7179 |
69 |
3.547 |
- |
- |
- |
- |
- |
4.7863 |
70 |
3.6094 |
0.3067 |
0.3427 |
0.3548 |
0.2651 |
0.3624 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.12.2
- Sentence Transformers: 3.0.0
- Transformers: 4.41.2
- PyTorch: 2.3.1
- Accelerate: 0.27.2
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}