--- base_model: liddlefish/privacy_embedding_rag_10k_base_checkpoint_2 language: - en library_name: sentence-transformers license: apache-2.0 metrics: - cosine_accuracy@1 - cosine_accuracy@3 - cosine_accuracy@5 - cosine_accuracy@10 - cosine_precision@1 - cosine_precision@3 - cosine_precision@5 - cosine_precision@10 - cosine_recall@1 - cosine_recall@3 - cosine_recall@5 - cosine_recall@10 - cosine_ndcg@10 - cosine_mrr@10 - cosine_map@100 pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - feature-extraction - dataset_size:1K - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 768 tokens - **Similarity Function:** Cosine Similarity - **Language:** en - **License:** apache-2.0 ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co./models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("sentence_transformers_model_id") # Run inference sentences = [ 'Sen o zastrzyku Irmy', 'gdzie Freud spotkał Irmę we śnie o zastrzyku Irmy?', 'dlaczego Ōkunoshima została wymazana z map Japonii?', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Evaluation ### Metrics #### Information Retrieval * Dataset: `dim_768` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.1875 | | cosine_accuracy@3 | 0.4543 | | cosine_accuracy@5 | 0.6226 | | cosine_accuracy@10 | 0.7308 | | cosine_precision@1 | 0.1875 | | cosine_precision@3 | 0.1514 | | cosine_precision@5 | 0.1245 | | cosine_precision@10 | 0.0731 | | cosine_recall@1 | 0.1875 | | cosine_recall@3 | 0.4543 | | cosine_recall@5 | 0.6226 | | cosine_recall@10 | 0.7308 | | cosine_ndcg@10 | 0.4453 | | cosine_mrr@10 | 0.355 | | **cosine_map@100** | **0.3624** | #### Information Retrieval * Dataset: `dim_512` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.1827 | | cosine_accuracy@3 | 0.4447 | | cosine_accuracy@5 | 0.6034 | | cosine_accuracy@10 | 0.7115 | | cosine_precision@1 | 0.1827 | | cosine_precision@3 | 0.1482 | | cosine_precision@5 | 0.1207 | | cosine_precision@10 | 0.0712 | | cosine_recall@1 | 0.1827 | | cosine_recall@3 | 0.4447 | | cosine_recall@5 | 0.6034 | | cosine_recall@10 | 0.7115 | | cosine_ndcg@10 | 0.4349 | | cosine_mrr@10 | 0.3472 | | **cosine_map@100** | **0.3548** | #### Information Retrieval * Dataset: `dim_256` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.1875 | | cosine_accuracy@3 | 0.4231 | | cosine_accuracy@5 | 0.5577 | | cosine_accuracy@10 | 0.6683 | | cosine_precision@1 | 0.1875 | | cosine_precision@3 | 0.141 | | cosine_precision@5 | 0.1115 | | cosine_precision@10 | 0.0668 | | cosine_recall@1 | 0.1875 | | cosine_recall@3 | 0.4231 | | cosine_recall@5 | 0.5577 | | cosine_recall@10 | 0.6683 | | cosine_ndcg@10 | 0.414 | | cosine_mrr@10 | 0.3337 | | **cosine_map@100** | **0.3427** | #### Information Retrieval * Dataset: `dim_128` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.1707 | | cosine_accuracy@3 | 0.3678 | | cosine_accuracy@5 | 0.512 | | cosine_accuracy@10 | 0.601 | | cosine_precision@1 | 0.1707 | | cosine_precision@3 | 0.1226 | | cosine_precision@5 | 0.1024 | | cosine_precision@10 | 0.0601 | | cosine_recall@1 | 0.1707 | | cosine_recall@3 | 0.3678 | | cosine_recall@5 | 0.512 | | cosine_recall@10 | 0.601 | | cosine_ndcg@10 | 0.3712 | | cosine_mrr@10 | 0.2988 | | **cosine_map@100** | **0.3067** | #### Information Retrieval * Dataset: `dim_64` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.1587 | | cosine_accuracy@3 | 0.3101 | | cosine_accuracy@5 | 0.387 | | cosine_accuracy@10 | 0.4928 | | cosine_precision@1 | 0.1587 | | cosine_precision@3 | 0.1034 | | cosine_precision@5 | 0.0774 | | cosine_precision@10 | 0.0493 | | cosine_recall@1 | 0.1587 | | cosine_recall@3 | 0.3101 | | cosine_recall@5 | 0.387 | | cosine_recall@10 | 0.4928 | | cosine_ndcg@10 | 0.3131 | | cosine_mrr@10 | 0.2569 | | **cosine_map@100** | **0.2651** | ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 3,738 training samples * Columns: positive and anchor * Approximate statistics based on the first 1000 samples: | | positive | anchor | |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| | type | string | string | | details | | | * Samples: | positive | anchor | |:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------| | Zespół Blaua (zespół Jabsa, ang. Blau syndrome, BS) – rzadka choroba genetyczna o dziedziczeniu autosomalnym dominującym, charakteryzująca się ziarniniakowym zapaleniem stawów o wczesnym początku, zapaleniem jagodówki (uveitis) i wysypką skórną, a także kamptodaktylią. | jakie choroby genetyczne dziedziczą się autosomalnie dominująco? | | Gorgippia Gorgippia – starożytne miasto bosporańskie nad Morzem Czarnym, którego pozostałości znajdują się obecnie pod współczesną zabudową centralnej części miasta Anapa w Kraju Krasnodarskim w Rosji. | gdzie obecnie znajduje się starożytne miasto Gorgippia? | | Ulubionym dystansem Rücker było 400 metrów i to na nim notowała największe indywidualne sukcesy : srebrny medal Mistrzostw Europy juniorów w lekkoatletyce (Saloniki 1991) 6. miejsce w Pucharze Świata w Lekkoatletyce (Hawana 1992) 5. miejsce na Mistrzostwach Europy w Lekkoatletyce (Helsinki 1994) srebro podczas Mistrzostw Świata w Lekkoatletyce (Sewilla 1999) złota medalistka mistrzostw Niemiec Duże sukcesy odnosiła także w sztafecie 4 x 400 metrów : złoto Mistrzostw Europy juniorów w lekkoatletyce (Varaždin 1989) złoty medal Mistrzostw Europy juniorów w lekkoatletyce (Saloniki 1991) brąz na Mistrzostwach Europy w Lekkoatletyce (Helsinki 1994) brązowy medal podczas Igrzysk Olimpijskich (Atlanta 1996) brąz na Halowych Mistrzostwach Świata w Lekkoatletyce (Paryż 1997) złoto Mistrzostw Świata w Lekkoatletyce (Ateny 1997) brązowy medal Mistrzostw Świata w Lekkoatletyce (Sewilla 1999) | kto zaprojektował medale, które będą wręczane podczas tegorocznych mistrzostw Europy juniorów w lekkoatletyce? | * Loss: [MatryoshkaLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: ```json { "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: epoch - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `gradient_accumulation_steps`: 16 - `learning_rate`: 2e-05 - `num_train_epochs`: 5 - `lr_scheduler_type`: cosine - `warmup_ratio`: 0.1 - `bf16`: True - `tf32`: True - `load_best_model_at_end`: True - `optim`: adamw_torch_fused - `batch_sampler`: no_duplicates #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: epoch - `prediction_loss_only`: True - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 16 - `eval_accumulation_steps`: None - `learning_rate`: 2e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 5 - `max_steps`: -1 - `lr_scheduler_type`: cosine - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: True - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: True - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: True - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch_fused - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional
### Training Logs | Epoch | Step | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 | |:----------:|:------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:| | 0.0684 | 1 | 9.112 | - | - | - | - | - | | 0.1368 | 2 | 9.5133 | - | - | - | - | - | | 0.2051 | 3 | 9.0946 | - | - | - | - | - | | 0.2735 | 4 | 8.9744 | - | - | - | - | - | | 0.3419 | 5 | 7.9039 | - | - | - | - | - | | 0.4103 | 6 | 8.1973 | - | - | - | - | - | | 0.4786 | 7 | 6.8979 | - | - | - | - | - | | 0.5470 | 8 | 7.0324 | - | - | - | - | - | | 0.6154 | 9 | 6.6472 | - | - | - | - | - | | 0.6838 | 10 | 6.3009 | - | - | - | - | - | | 0.7521 | 11 | 6.8778 | - | - | - | - | - | | 0.8205 | 12 | 5.9809 | - | - | - | - | - | | 0.8889 | 13 | 5.3054 | - | - | - | - | - | | 0.9573 | 14 | 5.706 | 0.2868 | 0.3280 | 0.3522 | 0.2415 | 0.3477 | | 1.0256 | 15 | 5.0592 | - | - | - | - | - | | 1.0940 | 16 | 4.7655 | - | - | - | - | - | | 1.1624 | 17 | 4.9682 | - | - | - | - | - | | 1.2308 | 18 | 5.1226 | - | - | - | - | - | | 1.2991 | 19 | 4.8655 | - | - | - | - | - | | 1.3675 | 20 | 4.2008 | - | - | - | - | - | | 1.4359 | 21 | 5.0281 | - | - | - | - | - | | 1.5043 | 22 | 4.3074 | - | - | - | - | - | | 1.5726 | 23 | 4.3163 | - | - | - | - | - | | 1.6410 | 24 | 3.9344 | - | - | - | - | - | | 1.7094 | 25 | 4.6567 | - | - | - | - | - | | 1.7778 | 26 | 4.5145 | - | - | - | - | - | | 1.8462 | 27 | 4.1319 | - | - | - | - | - | | 1.9145 | 28 | 3.8768 | - | - | - | - | - | | 1.9829 | 29 | 3.5525 | 0.2986 | 0.3330 | 0.3483 | 0.2590 | 0.3534 | | 2.0513 | 30 | 3.8693 | - | - | - | - | - | | 2.1197 | 31 | 3.4675 | - | - | - | - | - | | 2.1880 | 32 | 4.0598 | - | - | - | - | - | | 2.2564 | 33 | 4.2429 | - | - | - | - | - | | 2.3248 | 34 | 3.3686 | - | - | - | - | - | | 2.3932 | 35 | 3.2663 | - | - | - | - | - | | 2.4615 | 36 | 3.8585 | - | - | - | - | - | | 2.5299 | 37 | 3.1157 | - | - | - | - | - | | 2.5983 | 38 | 3.5254 | - | - | - | - | - | | 2.6667 | 39 | 3.2782 | - | - | - | - | - | | 2.7350 | 40 | 4.3151 | - | - | - | - | - | | 2.8034 | 41 | 3.4567 | - | - | - | - | - | | 2.8718 | 42 | 3.3976 | - | - | - | - | - | | 2.9402 | 43 | 3.3945 | 0.3014 | 0.3343 | 0.3522 | 0.2626 | 0.3593 | | 3.0085 | 44 | 3.4487 | - | - | - | - | - | | 3.0769 | 45 | 3.0021 | - | - | - | - | - | | 3.1453 | 46 | 3.2332 | - | - | - | - | - | | 3.2137 | 47 | 3.3012 | - | - | - | - | - | | 3.2821 | 48 | 3.2735 | - | - | - | - | - | | 3.3504 | 49 | 2.5335 | - | - | - | - | - | | 3.4188 | 50 | 3.7025 | - | - | - | - | - | | 3.4872 | 51 | 2.8596 | - | - | - | - | - | | 3.5556 | 52 | 3.1108 | - | - | - | - | - | | 3.6239 | 53 | 3.2807 | - | - | - | - | - | | 3.6923 | 54 | 3.1604 | - | - | - | - | - | | 3.7607 | 55 | 3.7179 | - | - | - | - | - | | 3.8291 | 56 | 3.3418 | - | - | - | - | - | | 3.8974 | 57 | 2.9735 | - | - | - | - | - | | 3.9658 | 58 | 3.2755 | 0.3066 | 0.3409 | 0.3546 | 0.2653 | 0.3626 | | 4.0342 | 59 | 3.1444 | - | - | - | - | - | | 4.1026 | 60 | 3.0212 | - | - | - | - | - | | 4.1709 | 61 | 3.1298 | - | - | - | - | - | | 4.2393 | 62 | 3.3195 | - | - | - | - | - | | 4.3077 | 63 | 2.996 | - | - | - | - | - | | 4.3761 | 64 | 2.4636 | - | - | - | - | - | | 4.4444 | 65 | 3.2388 | - | - | - | - | - | | 4.5128 | 66 | 2.747 | - | - | - | - | - | | 4.5812 | 67 | 2.8715 | - | - | - | - | - | | 4.6496 | 68 | 3.1402 | - | - | - | - | - | | 4.7179 | 69 | 3.547 | - | - | - | - | - | | **4.7863** | **70** | **3.6094** | **0.3067** | **0.3427** | **0.3548** | **0.2651** | **0.3624** | * The bold row denotes the saved checkpoint. ### Framework Versions - Python: 3.12.2 - Sentence Transformers: 3.0.0 - Transformers: 4.41.2 - PyTorch: 2.3.1 - Accelerate: 0.27.2 - Datasets: 2.19.1 - Tokenizers: 0.19.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MatryoshkaLoss ```bibtex @misc{kusupati2024matryoshka, title={Matryoshka Representation Learning}, author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, year={2024}, eprint={2205.13147}, archivePrefix={arXiv}, primaryClass={cs.LG} } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```