usamaaleem99tech's picture
update model card README.md
19b43b1
|
raw
history blame
2.69 kB
metadata
license: apache-2.0
base_model: microsoft/swin-tiny-patch4-window7-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: segformer-class-classWeights-augmentation
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8620689655172413

segformer-class-classWeights-augmentation

This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4872
  • Accuracy: 0.8621

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 128
  • eval_batch_size: 128
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 512
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 1 1.1700 0.2759
No log 2.0 3 1.0351 0.3793
No log 3.0 5 0.9731 0.5172
No log 4.0 6 0.9362 0.5172
No log 5.0 7 0.8890 0.5517
No log 6.0 9 0.7596 0.7586
0.5024 7.0 11 0.6531 0.8621
0.5024 8.0 12 0.6170 0.8621
0.5024 9.0 13 0.5878 0.8966
0.5024 10.0 15 0.5418 0.8621
0.5024 11.0 17 0.5122 0.8621
0.5024 12.0 18 0.5021 0.8621
0.5024 13.0 19 0.4928 0.8621
0.3117 13.33 20 0.4872 0.8621

Framework versions

  • Transformers 4.31.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.13.1
  • Tokenizers 0.13.3