--- license: apache-2.0 base_model: microsoft/swin-tiny-patch4-window7-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: segformer-class-classWeights-augmentation results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.8620689655172413 --- # segformer-class-classWeights-augmentation This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co./microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.4872 - Accuracy: 0.8621 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 512 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 1 | 1.1700 | 0.2759 | | No log | 2.0 | 3 | 1.0351 | 0.3793 | | No log | 3.0 | 5 | 0.9731 | 0.5172 | | No log | 4.0 | 6 | 0.9362 | 0.5172 | | No log | 5.0 | 7 | 0.8890 | 0.5517 | | No log | 6.0 | 9 | 0.7596 | 0.7586 | | 0.5024 | 7.0 | 11 | 0.6531 | 0.8621 | | 0.5024 | 8.0 | 12 | 0.6170 | 0.8621 | | 0.5024 | 9.0 | 13 | 0.5878 | 0.8966 | | 0.5024 | 10.0 | 15 | 0.5418 | 0.8621 | | 0.5024 | 11.0 | 17 | 0.5122 | 0.8621 | | 0.5024 | 12.0 | 18 | 0.5021 | 0.8621 | | 0.5024 | 13.0 | 19 | 0.4928 | 0.8621 | | 0.3117 | 13.33 | 20 | 0.4872 | 0.8621 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3