metadata
license: apache-2.0
base_model: microsoft/swin-tiny-patch4-window7-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: segformer-class-classWeights-augmentation
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.7586206896551724
segformer-class-classWeights-augmentation
This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.6803
- Accuracy: 0.7586
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 50
- eval_batch_size: 50
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 200
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 20
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 0.67 | 1 | 1.2027 | 0.3103 |
No log | 2.0 | 3 | 1.1212 | 0.3448 |
No log | 2.67 | 4 | 1.0648 | 0.4138 |
No log | 4.0 | 6 | 0.9779 | 0.5172 |
No log | 4.67 | 7 | 0.9494 | 0.5517 |
No log | 6.0 | 9 | 0.9168 | 0.5862 |
0.9535 | 6.67 | 10 | 0.8808 | 0.6552 |
0.9535 | 8.0 | 12 | 0.8136 | 0.7241 |
0.9535 | 8.67 | 13 | 0.8015 | 0.7241 |
0.9535 | 10.0 | 15 | 0.7727 | 0.7586 |
0.9535 | 10.67 | 16 | 0.7510 | 0.7586 |
0.9535 | 12.0 | 18 | 0.6997 | 0.7586 |
0.9535 | 12.67 | 19 | 0.6856 | 0.7586 |
0.5181 | 13.33 | 20 | 0.6803 | 0.7586 |
Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3