File size: 2,683 Bytes
9bc5971 320996e 9bc5971 e59c92b 9bc5971 e59c92b 9bc5971 e59c92b 9bc5971 e59c92b 9bc5971 2eef93a 9bc5971 e59c92b 9bc5971 320996e 9bc5971 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 |
---
license: apache-2.0
base_model: microsoft/swin-tiny-patch4-window7-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: segformer-class-classWeights-augmentation
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.7586206896551724
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# segformer-class-classWeights-augmentation
This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co./microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6803
- Accuracy: 0.7586
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 50
- eval_batch_size: 50
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 200
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 0.67 | 1 | 1.2027 | 0.3103 |
| No log | 2.0 | 3 | 1.1212 | 0.3448 |
| No log | 2.67 | 4 | 1.0648 | 0.4138 |
| No log | 4.0 | 6 | 0.9779 | 0.5172 |
| No log | 4.67 | 7 | 0.9494 | 0.5517 |
| No log | 6.0 | 9 | 0.9168 | 0.5862 |
| 0.9535 | 6.67 | 10 | 0.8808 | 0.6552 |
| 0.9535 | 8.0 | 12 | 0.8136 | 0.7241 |
| 0.9535 | 8.67 | 13 | 0.8015 | 0.7241 |
| 0.9535 | 10.0 | 15 | 0.7727 | 0.7586 |
| 0.9535 | 10.67 | 16 | 0.7510 | 0.7586 |
| 0.9535 | 12.0 | 18 | 0.6997 | 0.7586 |
| 0.9535 | 12.67 | 19 | 0.6856 | 0.7586 |
| 0.5181 | 13.33 | 20 | 0.6803 | 0.7586 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3
|