metadata
base_model: BAAI/bge-base-en-v1.5
datasets: []
language:
- en
library_name: sentence-transformers
license: apache-2.0
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:6300
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: >-
Mergers and acquisitions, joint ventures and strategic investments
complement our internal development and enhance our partnerships to align
with Visa’s priorities.
sentences:
- >-
How much did the unbilled accounts receivable amount to as of December
30, 2023?
- >-
What was the main reason for Visa to engage in mergers and acquisitions,
joint ventures, and strategic investments?
- What is the mission of Intuit?
- source_sentence: >-
Garmin’s audio brands, Fusion and JL Audio, offer premium audio products
and accessories, including head units, speakers, amplifiers, subwoofers,
and other audio components. These products are designed specifically for
the marine, powersports, aftermarket automotive, home, or RV environments,
offering premium sound quality and supporting many connectivity options
for integrating with MFDs, smartphones, and Garmin wearables.
sentences:
- >-
What type of insurance policies cover some of the defense and settlement
costs associated with litigation mentioned?
- >-
What types of audio products does Garmin's Fusion and JL Audio brands
offer?
- >-
What should investors consider when comparing Adjusted EBITDA across
different companies?
- source_sentence: >-
Medical device products that are marketed in the European Union must
comply with the requirements of the Medical Device Regulation (the MDR),
which came into effect in May 2021. The MDR provides for regulatory
oversight with respect to the design, manufacture, clinical trials,
labeling and adverse event reporting for medical devices.
sentences:
- >-
What are the requirements for medical devices to be marketed in the
European Union under the MDR?
- >-
By what percentage did the pre-tax earnings increase from 2021 to 2022
in the manufacturing sector?
- What were the cash and cash equivalents at the end of 2023?
- source_sentence: >-
In March 2023, the Board of Directors sanctioned a restructuring plan
concentrated on investment prioritization towards significant growth
prospects and the optimization of the company's real estate assets. This
includes substantial organizational changes such as reductions in office
space and workforce.
sentences:
- >-
How many physicians are part of the domestic Office of the Chief Medical
Officer at DaVita as of December 31, 2023?
- >-
What changes in expenses did Delta Air Lines' ancillary businesses and
refinery segment encounter in 2023 compared to 2022?
- >-
What are the restructuring targets of the company's Board of Directors
as of 2023?
- source_sentence: >-
The quality of GM dealerships and our relationship with our dealers are
critical to our success, now, and as we transition to our all-electric
future, given that they maintain the primary sales and service interface
with the end consumer of our products. In addition to the terms of our
contracts with our dealers, we are regulated by various country and state
franchise laws and regulations that may supersede those contractual terms
and impose specific regulatory
sentences:
- >-
How does General[39 chars] Motors ensure quality in their dealership
network?
- How can the public access the company's financial and legal reports?
- >-
Is the outcome of the investigation into Tesla's waste segregation
practices currently determinable?
model-index:
- name: BGE base Financial Matryoshka
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.6785714285714286
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8171428571428572
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8671428571428571
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.91
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6785714285714286
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2723809523809524
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1734285714285714
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09099999999999998
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6785714285714286
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8171428571428572
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8671428571428571
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.91
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7949318413045188
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7579920634920636
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.761780829563342
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.6714285714285714
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8171428571428572
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8642857142857143
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9028571428571428
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6714285714285714
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2723809523809524
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17285714285714285
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09028571428571427
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6714285714285714
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8171428571428572
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8642857142857143
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9028571428571428
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7892232861723367
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7524767573696142
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7566816338836445
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.6671428571428571
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8142857142857143
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8657142857142858
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9028571428571428
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6671428571428571
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2714285714285714
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17314285714285713
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09028571428571427
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6671428571428571
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8142857142857143
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8657142857142858
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9028571428571428
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.786715703830093
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.749225056689342
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7532686203724872
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.6542857142857142
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8071428571428572
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8428571428571429
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6542857142857142
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.26904761904761904
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.16857142857142854
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6542857142857142
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8071428571428572
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8428571428571429
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7763972670750712
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7369308390022671
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7407041984815913
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.62
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.7671428571428571
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8171428571428572
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8785714285714286
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.62
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2557142857142857
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.16342857142857142
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08785714285714284
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.62
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.7671428571428571
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8171428571428572
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8785714285714286
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7482796784963641
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7067517006802718
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7110201251131743
name: Cosine Map@100
BGE base Financial Matryoshka
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("uhoffmann/bge-base-financial-matryoshka")
sentences = [
'The quality of GM dealerships and our relationship with our dealers are critical to our success, now, and as we transition to our all-electric future, given that they maintain the primary sales and service interface with the end consumer of our products. In addition to the terms of our contracts with our dealers, we are regulated by various country and state franchise laws and regulations that may supersede those contractual terms and impose specific regulatory',
'How does General[39 chars] Motors ensure quality in their dealership network?',
"How can the public access the company's financial and legal reports?",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.6786 |
cosine_accuracy@3 |
0.8171 |
cosine_accuracy@5 |
0.8671 |
cosine_accuracy@10 |
0.91 |
cosine_precision@1 |
0.6786 |
cosine_precision@3 |
0.2724 |
cosine_precision@5 |
0.1734 |
cosine_precision@10 |
0.091 |
cosine_recall@1 |
0.6786 |
cosine_recall@3 |
0.8171 |
cosine_recall@5 |
0.8671 |
cosine_recall@10 |
0.91 |
cosine_ndcg@10 |
0.7949 |
cosine_mrr@10 |
0.758 |
cosine_map@100 |
0.7618 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.6714 |
cosine_accuracy@3 |
0.8171 |
cosine_accuracy@5 |
0.8643 |
cosine_accuracy@10 |
0.9029 |
cosine_precision@1 |
0.6714 |
cosine_precision@3 |
0.2724 |
cosine_precision@5 |
0.1729 |
cosine_precision@10 |
0.0903 |
cosine_recall@1 |
0.6714 |
cosine_recall@3 |
0.8171 |
cosine_recall@5 |
0.8643 |
cosine_recall@10 |
0.9029 |
cosine_ndcg@10 |
0.7892 |
cosine_mrr@10 |
0.7525 |
cosine_map@100 |
0.7567 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.6671 |
cosine_accuracy@3 |
0.8143 |
cosine_accuracy@5 |
0.8657 |
cosine_accuracy@10 |
0.9029 |
cosine_precision@1 |
0.6671 |
cosine_precision@3 |
0.2714 |
cosine_precision@5 |
0.1731 |
cosine_precision@10 |
0.0903 |
cosine_recall@1 |
0.6671 |
cosine_recall@3 |
0.8143 |
cosine_recall@5 |
0.8657 |
cosine_recall@10 |
0.9029 |
cosine_ndcg@10 |
0.7867 |
cosine_mrr@10 |
0.7492 |
cosine_map@100 |
0.7533 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.6543 |
cosine_accuracy@3 |
0.8071 |
cosine_accuracy@5 |
0.8429 |
cosine_accuracy@10 |
0.9 |
cosine_precision@1 |
0.6543 |
cosine_precision@3 |
0.269 |
cosine_precision@5 |
0.1686 |
cosine_precision@10 |
0.09 |
cosine_recall@1 |
0.6543 |
cosine_recall@3 |
0.8071 |
cosine_recall@5 |
0.8429 |
cosine_recall@10 |
0.9 |
cosine_ndcg@10 |
0.7764 |
cosine_mrr@10 |
0.7369 |
cosine_map@100 |
0.7407 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.62 |
cosine_accuracy@3 |
0.7671 |
cosine_accuracy@5 |
0.8171 |
cosine_accuracy@10 |
0.8786 |
cosine_precision@1 |
0.62 |
cosine_precision@3 |
0.2557 |
cosine_precision@5 |
0.1634 |
cosine_precision@10 |
0.0879 |
cosine_recall@1 |
0.62 |
cosine_recall@3 |
0.7671 |
cosine_recall@5 |
0.8171 |
cosine_recall@10 |
0.8786 |
cosine_ndcg@10 |
0.7483 |
cosine_mrr@10 |
0.7068 |
cosine_map@100 |
0.711 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 6,300 training samples
- Columns:
positive
and anchor
- Approximate statistics based on the first 1000 samples:
|
positive |
anchor |
type |
string |
string |
details |
- min: 2 tokens
- mean: 44.88 tokens
- max: 272 tokens
|
- min: 2 tokens
- mean: 20.58 tokens
- max: 45 tokens
|
- Samples:
positive |
anchor |
Walmart Inc. reported total revenues of $611,289 million for the fiscal year ended January 31, 2023. |
What was Walmart Inc.'s total revenue in the fiscal year ended January 31, 2023? |
The total equity balance of Visa Inc. as of September 30, 2023 was $38,733 million. |
What was the total equity of Visa Inc. as of September 30, 2023? |
Nike incorporates new technologies in its product design by using market intelligence and research, which helps its design teams identify opportunities to leverage these technologies in existing categories to respond to consumer preferences. |
How does Nike incorporate new technologies in its product design? |
- Loss:
MatryoshkaLoss
with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epoch
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 16
gradient_accumulation_steps
: 16
learning_rate
: 2e-05
num_train_epochs
: 4
lr_scheduler_type
: cosine
warmup_ratio
: 0.1
bf16
: True
tf32
: True
load_best_model_at_end
: True
optim
: adamw_torch_fused
batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
eval_strategy
: epoch
prediction_loss_only
: True
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 16
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 16
eval_accumulation_steps
: None
torch_empty_cache_steps
: None
learning_rate
: 2e-05
weight_decay
: 0.0
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 4
max_steps
: -1
lr_scheduler_type
: cosine
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.1
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: True
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
restore_callback_states_from_checkpoint
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: True
fp16
: False
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: True
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: False
dataloader_num_workers
: 0
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: True
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch_fused
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: None
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: False
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: False
hub_always_push
: False
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
dispatch_batches
: None
split_batches
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_eval_metrics
: False
eval_on_start
: False
eval_use_gather_object
: False
batch_sampler
: no_duplicates
multi_dataset_batch_sampler
: proportional
Training Logs
Epoch |
Step |
Training Loss |
dim_128_cosine_map@100 |
dim_256_cosine_map@100 |
dim_512_cosine_map@100 |
dim_64_cosine_map@100 |
dim_768_cosine_map@100 |
0.8122 |
10 |
1.5521 |
- |
- |
- |
- |
- |
0.9746 |
12 |
- |
0.7178 |
0.7352 |
0.7404 |
0.6833 |
0.7422 |
1.6244 |
20 |
0.6753 |
- |
- |
- |
- |
- |
1.9492 |
24 |
- |
0.7340 |
0.7452 |
0.7524 |
0.7057 |
0.7561 |
2.4365 |
30 |
0.4611 |
- |
- |
- |
- |
- |
2.9239 |
36 |
- |
0.7392 |
0.7509 |
0.7560 |
0.7103 |
0.7588 |
3.2487 |
40 |
0.3763 |
- |
- |
- |
- |
- |
3.8985 |
48 |
- |
0.7407 |
0.7533 |
0.7567 |
0.711 |
0.7618 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.44.2
- PyTorch: 2.4.0+cu121
- Accelerate: 0.32.1
- Datasets: 2.21.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}