BGE base Financial Matryoshka
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("uhoffmann/bge-base-financial-matryoshka")
sentences = [
'The quality of GM dealerships and our relationship with our dealers are critical to our success, now, and as we transition to our all-electric future, given that they maintain the primary sales and service interface with the end consumer of our products. In addition to the terms of our contracts with our dealers, we are regulated by various country and state franchise laws and regulations that may supersede those contractual terms and impose specific regulatory',
'How does General[39 chars] Motors ensure quality in their dealership network?',
"How can the public access the company's financial and legal reports?",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.6786 |
cosine_accuracy@3 |
0.8171 |
cosine_accuracy@5 |
0.8671 |
cosine_accuracy@10 |
0.91 |
cosine_precision@1 |
0.6786 |
cosine_precision@3 |
0.2724 |
cosine_precision@5 |
0.1734 |
cosine_precision@10 |
0.091 |
cosine_recall@1 |
0.6786 |
cosine_recall@3 |
0.8171 |
cosine_recall@5 |
0.8671 |
cosine_recall@10 |
0.91 |
cosine_ndcg@10 |
0.7949 |
cosine_mrr@10 |
0.758 |
cosine_map@100 |
0.7618 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.6714 |
cosine_accuracy@3 |
0.8171 |
cosine_accuracy@5 |
0.8643 |
cosine_accuracy@10 |
0.9029 |
cosine_precision@1 |
0.6714 |
cosine_precision@3 |
0.2724 |
cosine_precision@5 |
0.1729 |
cosine_precision@10 |
0.0903 |
cosine_recall@1 |
0.6714 |
cosine_recall@3 |
0.8171 |
cosine_recall@5 |
0.8643 |
cosine_recall@10 |
0.9029 |
cosine_ndcg@10 |
0.7892 |
cosine_mrr@10 |
0.7525 |
cosine_map@100 |
0.7567 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.6671 |
cosine_accuracy@3 |
0.8143 |
cosine_accuracy@5 |
0.8657 |
cosine_accuracy@10 |
0.9029 |
cosine_precision@1 |
0.6671 |
cosine_precision@3 |
0.2714 |
cosine_precision@5 |
0.1731 |
cosine_precision@10 |
0.0903 |
cosine_recall@1 |
0.6671 |
cosine_recall@3 |
0.8143 |
cosine_recall@5 |
0.8657 |
cosine_recall@10 |
0.9029 |
cosine_ndcg@10 |
0.7867 |
cosine_mrr@10 |
0.7492 |
cosine_map@100 |
0.7533 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.6543 |
cosine_accuracy@3 |
0.8071 |
cosine_accuracy@5 |
0.8429 |
cosine_accuracy@10 |
0.9 |
cosine_precision@1 |
0.6543 |
cosine_precision@3 |
0.269 |
cosine_precision@5 |
0.1686 |
cosine_precision@10 |
0.09 |
cosine_recall@1 |
0.6543 |
cosine_recall@3 |
0.8071 |
cosine_recall@5 |
0.8429 |
cosine_recall@10 |
0.9 |
cosine_ndcg@10 |
0.7764 |
cosine_mrr@10 |
0.7369 |
cosine_map@100 |
0.7407 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.62 |
cosine_accuracy@3 |
0.7671 |
cosine_accuracy@5 |
0.8171 |
cosine_accuracy@10 |
0.8786 |
cosine_precision@1 |
0.62 |
cosine_precision@3 |
0.2557 |
cosine_precision@5 |
0.1634 |
cosine_precision@10 |
0.0879 |
cosine_recall@1 |
0.62 |
cosine_recall@3 |
0.7671 |
cosine_recall@5 |
0.8171 |
cosine_recall@10 |
0.8786 |
cosine_ndcg@10 |
0.7483 |
cosine_mrr@10 |
0.7068 |
cosine_map@100 |
0.711 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 6,300 training samples
- Columns:
positive
and anchor
- Approximate statistics based on the first 1000 samples:
|
positive |
anchor |
type |
string |
string |
details |
- min: 2 tokens
- mean: 44.88 tokens
- max: 272 tokens
|
- min: 2 tokens
- mean: 20.58 tokens
- max: 45 tokens
|
- Samples:
positive |
anchor |
Walmart Inc. reported total revenues of $611,289 million for the fiscal year ended January 31, 2023. |
What was Walmart Inc.'s total revenue in the fiscal year ended January 31, 2023? |
The total equity balance of Visa Inc. as of September 30, 2023 was $38,733 million. |
What was the total equity of Visa Inc. as of September 30, 2023? |
Nike incorporates new technologies in its product design by using market intelligence and research, which helps its design teams identify opportunities to leverage these technologies in existing categories to respond to consumer preferences. |
How does Nike incorporate new technologies in its product design? |
- Loss:
MatryoshkaLoss
with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epoch
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 16
gradient_accumulation_steps
: 16
learning_rate
: 2e-05
num_train_epochs
: 4
lr_scheduler_type
: cosine
warmup_ratio
: 0.1
bf16
: True
tf32
: True
load_best_model_at_end
: True
optim
: adamw_torch_fused
batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
eval_strategy
: epoch
prediction_loss_only
: True
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 16
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 16
eval_accumulation_steps
: None
torch_empty_cache_steps
: None
learning_rate
: 2e-05
weight_decay
: 0.0
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 4
max_steps
: -1
lr_scheduler_type
: cosine
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.1
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: True
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
restore_callback_states_from_checkpoint
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: True
fp16
: False
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: True
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: False
dataloader_num_workers
: 0
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: True
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch_fused
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: None
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: False
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: False
hub_always_push
: False
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
dispatch_batches
: None
split_batches
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_eval_metrics
: False
eval_on_start
: False
eval_use_gather_object
: False
batch_sampler
: no_duplicates
multi_dataset_batch_sampler
: proportional
Training Logs
Epoch |
Step |
Training Loss |
dim_128_cosine_map@100 |
dim_256_cosine_map@100 |
dim_512_cosine_map@100 |
dim_64_cosine_map@100 |
dim_768_cosine_map@100 |
0.8122 |
10 |
1.5521 |
- |
- |
- |
- |
- |
0.9746 |
12 |
- |
0.7178 |
0.7352 |
0.7404 |
0.6833 |
0.7422 |
1.6244 |
20 |
0.6753 |
- |
- |
- |
- |
- |
1.9492 |
24 |
- |
0.7340 |
0.7452 |
0.7524 |
0.7057 |
0.7561 |
2.4365 |
30 |
0.4611 |
- |
- |
- |
- |
- |
2.9239 |
36 |
- |
0.7392 |
0.7509 |
0.7560 |
0.7103 |
0.7588 |
3.2487 |
40 |
0.3763 |
- |
- |
- |
- |
- |
3.8985 |
48 |
- |
0.7407 |
0.7533 |
0.7567 |
0.711 |
0.7618 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.44.2
- PyTorch: 2.4.0+cu121
- Accelerate: 0.32.1
- Datasets: 2.21.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}