|
--- |
|
base_model: BAAI/bge-base-en-v1.5 |
|
datasets: [] |
|
language: |
|
- en |
|
library_name: sentence-transformers |
|
license: apache-2.0 |
|
metrics: |
|
- cosine_accuracy@1 |
|
- cosine_accuracy@3 |
|
- cosine_accuracy@5 |
|
- cosine_accuracy@10 |
|
- cosine_precision@1 |
|
- cosine_precision@3 |
|
- cosine_precision@5 |
|
- cosine_precision@10 |
|
- cosine_recall@1 |
|
- cosine_recall@3 |
|
- cosine_recall@5 |
|
- cosine_recall@10 |
|
- cosine_ndcg@10 |
|
- cosine_mrr@10 |
|
- cosine_map@100 |
|
pipeline_tag: sentence-similarity |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:6300 |
|
- loss:MatryoshkaLoss |
|
- loss:MultipleNegativesRankingLoss |
|
widget: |
|
- source_sentence: Mergers and acquisitions, joint ventures and strategic investments |
|
complement our internal development and enhance our partnerships to align with |
|
Visa’s priorities. |
|
sentences: |
|
- How much did the unbilled accounts receivable amount to as of December 30, 2023? |
|
- What was the main reason for Visa to engage in mergers and acquisitions, joint |
|
ventures, and strategic investments? |
|
- What is the mission of Intuit? |
|
- source_sentence: Garmin’s audio brands, Fusion and JL Audio, offer premium audio |
|
products and accessories, including head units, speakers, amplifiers, subwoofers, |
|
and other audio components. These products are designed specifically for the marine, |
|
powersports, aftermarket automotive, home, or RV environments, offering premium |
|
sound quality and supporting many connectivity options for integrating with MFDs, |
|
smartphones, and Garmin wearables. |
|
sentences: |
|
- What type of insurance policies cover some of the defense and settlement costs |
|
associated with litigation mentioned? |
|
- What types of audio products does Garmin's Fusion and JL Audio brands offer? |
|
- What should investors consider when comparing Adjusted EBITDA across different |
|
companies? |
|
- source_sentence: Medical device products that are marketed in the European Union |
|
must comply with the requirements of the Medical Device Regulation (the MDR), |
|
which came into effect in May 2021. The MDR provides for regulatory oversight |
|
with respect to the design, manufacture, clinical trials, labeling and adverse |
|
event reporting for medical devices. |
|
sentences: |
|
- What are the requirements for medical devices to be marketed in the European Union |
|
under the MDR? |
|
- By what percentage did the pre-tax earnings increase from 2021 to 2022 in the |
|
manufacturing sector? |
|
- What were the cash and cash equivalents at the end of 2023? |
|
- source_sentence: In March 2023, the Board of Directors sanctioned a restructuring |
|
plan concentrated on investment prioritization towards significant growth prospects |
|
and the optimization of the company's real estate assets. This includes substantial |
|
organizational changes such as reductions in office space and workforce. |
|
sentences: |
|
- How many physicians are part of the domestic Office of the Chief Medical Officer |
|
at DaVita as of December 31, 2023? |
|
- What changes in expenses did Delta Air Lines' ancillary businesses and refinery |
|
segment encounter in 2023 compared to 2022? |
|
- What are the restructuring targets of the company's Board of Directors as of 2023? |
|
- source_sentence: The quality of GM dealerships and our relationship with our dealers |
|
are critical to our success, now, and as we transition to our all-electric future, |
|
given that they maintain the primary sales and service interface with the end |
|
consumer of our products. In addition to the terms of our contracts with our dealers, |
|
we are regulated by various country and state franchise laws and regulations that |
|
may supersede those contractual terms and impose specific regulatory |
|
sentences: |
|
- How does General[39 chars] Motors ensure quality in their dealership network? |
|
- How can the public access the company's financial and legal reports? |
|
- Is the outcome of the investigation into Tesla's waste segregation practices currently |
|
determinable? |
|
model-index: |
|
- name: BGE base Financial Matryoshka |
|
results: |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: dim 768 |
|
type: dim_768 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.6785714285714286 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.8171428571428572 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.8671428571428571 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.91 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.6785714285714286 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.2723809523809524 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.1734285714285714 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.09099999999999998 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.6785714285714286 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.8171428571428572 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.8671428571428571 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.91 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.7949318413045188 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.7579920634920636 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.761780829563342 |
|
name: Cosine Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: dim 512 |
|
type: dim_512 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.6714285714285714 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.8171428571428572 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.8642857142857143 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.9028571428571428 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.6714285714285714 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.2723809523809524 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.17285714285714285 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.09028571428571427 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.6714285714285714 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.8171428571428572 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.8642857142857143 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.9028571428571428 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.7892232861723367 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.7524767573696142 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.7566816338836445 |
|
name: Cosine Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: dim 256 |
|
type: dim_256 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.6671428571428571 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.8142857142857143 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.8657142857142858 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.9028571428571428 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.6671428571428571 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.2714285714285714 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.17314285714285713 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.09028571428571427 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.6671428571428571 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.8142857142857143 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.8657142857142858 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.9028571428571428 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.786715703830093 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.749225056689342 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.7532686203724872 |
|
name: Cosine Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: dim 128 |
|
type: dim_128 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.6542857142857142 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.8071428571428572 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.8428571428571429 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.9 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.6542857142857142 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.26904761904761904 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.16857142857142854 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.09 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.6542857142857142 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.8071428571428572 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.8428571428571429 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.9 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.7763972670750712 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.7369308390022671 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.7407041984815913 |
|
name: Cosine Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: dim 64 |
|
type: dim_64 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.62 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.7671428571428571 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.8171428571428572 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.8785714285714286 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.62 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.2557142857142857 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.16342857142857142 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.08785714285714284 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.62 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.7671428571428571 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.8171428571428572 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.8785714285714286 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.7482796784963641 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.7067517006802718 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.7110201251131743 |
|
name: Cosine Map@100 |
|
--- |
|
|
|
# BGE base Financial Matryoshka |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co./BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co./BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a --> |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Output Dimensionality:** 768 tokens |
|
- **Similarity Function:** Cosine Similarity |
|
<!-- - **Training Dataset:** Unknown --> |
|
- **Language:** en |
|
- **License:** apache-2.0 |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co./models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
(2): Normalize() |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("uhoffmann/bge-base-financial-matryoshka") |
|
# Run inference |
|
sentences = [ |
|
'The quality of GM dealerships and our relationship with our dealers are critical to our success, now, and as we transition to our all-electric future, given that they maintain the primary sales and service interface with the end consumer of our products. In addition to the terms of our contracts with our dealers, we are regulated by various country and state franchise laws and regulations that may supersede those contractual terms and impose specific regulatory', |
|
'How does General[39 chars] Motors ensure quality in their dealership network?', |
|
"How can the public access the company's financial and legal reports?", |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 768] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Information Retrieval |
|
* Dataset: `dim_768` |
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| cosine_accuracy@1 | 0.6786 | |
|
| cosine_accuracy@3 | 0.8171 | |
|
| cosine_accuracy@5 | 0.8671 | |
|
| cosine_accuracy@10 | 0.91 | |
|
| cosine_precision@1 | 0.6786 | |
|
| cosine_precision@3 | 0.2724 | |
|
| cosine_precision@5 | 0.1734 | |
|
| cosine_precision@10 | 0.091 | |
|
| cosine_recall@1 | 0.6786 | |
|
| cosine_recall@3 | 0.8171 | |
|
| cosine_recall@5 | 0.8671 | |
|
| cosine_recall@10 | 0.91 | |
|
| cosine_ndcg@10 | 0.7949 | |
|
| cosine_mrr@10 | 0.758 | |
|
| **cosine_map@100** | **0.7618** | |
|
|
|
#### Information Retrieval |
|
* Dataset: `dim_512` |
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| cosine_accuracy@1 | 0.6714 | |
|
| cosine_accuracy@3 | 0.8171 | |
|
| cosine_accuracy@5 | 0.8643 | |
|
| cosine_accuracy@10 | 0.9029 | |
|
| cosine_precision@1 | 0.6714 | |
|
| cosine_precision@3 | 0.2724 | |
|
| cosine_precision@5 | 0.1729 | |
|
| cosine_precision@10 | 0.0903 | |
|
| cosine_recall@1 | 0.6714 | |
|
| cosine_recall@3 | 0.8171 | |
|
| cosine_recall@5 | 0.8643 | |
|
| cosine_recall@10 | 0.9029 | |
|
| cosine_ndcg@10 | 0.7892 | |
|
| cosine_mrr@10 | 0.7525 | |
|
| **cosine_map@100** | **0.7567** | |
|
|
|
#### Information Retrieval |
|
* Dataset: `dim_256` |
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| cosine_accuracy@1 | 0.6671 | |
|
| cosine_accuracy@3 | 0.8143 | |
|
| cosine_accuracy@5 | 0.8657 | |
|
| cosine_accuracy@10 | 0.9029 | |
|
| cosine_precision@1 | 0.6671 | |
|
| cosine_precision@3 | 0.2714 | |
|
| cosine_precision@5 | 0.1731 | |
|
| cosine_precision@10 | 0.0903 | |
|
| cosine_recall@1 | 0.6671 | |
|
| cosine_recall@3 | 0.8143 | |
|
| cosine_recall@5 | 0.8657 | |
|
| cosine_recall@10 | 0.9029 | |
|
| cosine_ndcg@10 | 0.7867 | |
|
| cosine_mrr@10 | 0.7492 | |
|
| **cosine_map@100** | **0.7533** | |
|
|
|
#### Information Retrieval |
|
* Dataset: `dim_128` |
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| cosine_accuracy@1 | 0.6543 | |
|
| cosine_accuracy@3 | 0.8071 | |
|
| cosine_accuracy@5 | 0.8429 | |
|
| cosine_accuracy@10 | 0.9 | |
|
| cosine_precision@1 | 0.6543 | |
|
| cosine_precision@3 | 0.269 | |
|
| cosine_precision@5 | 0.1686 | |
|
| cosine_precision@10 | 0.09 | |
|
| cosine_recall@1 | 0.6543 | |
|
| cosine_recall@3 | 0.8071 | |
|
| cosine_recall@5 | 0.8429 | |
|
| cosine_recall@10 | 0.9 | |
|
| cosine_ndcg@10 | 0.7764 | |
|
| cosine_mrr@10 | 0.7369 | |
|
| **cosine_map@100** | **0.7407** | |
|
|
|
#### Information Retrieval |
|
* Dataset: `dim_64` |
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:----------| |
|
| cosine_accuracy@1 | 0.62 | |
|
| cosine_accuracy@3 | 0.7671 | |
|
| cosine_accuracy@5 | 0.8171 | |
|
| cosine_accuracy@10 | 0.8786 | |
|
| cosine_precision@1 | 0.62 | |
|
| cosine_precision@3 | 0.2557 | |
|
| cosine_precision@5 | 0.1634 | |
|
| cosine_precision@10 | 0.0879 | |
|
| cosine_recall@1 | 0.62 | |
|
| cosine_recall@3 | 0.7671 | |
|
| cosine_recall@5 | 0.8171 | |
|
| cosine_recall@10 | 0.8786 | |
|
| cosine_ndcg@10 | 0.7483 | |
|
| cosine_mrr@10 | 0.7068 | |
|
| **cosine_map@100** | **0.711** | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### Unnamed Dataset |
|
|
|
|
|
* Size: 6,300 training samples |
|
* Columns: <code>positive</code> and <code>anchor</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | positive | anchor | |
|
|:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| |
|
| type | string | string | |
|
| details | <ul><li>min: 2 tokens</li><li>mean: 44.88 tokens</li><li>max: 272 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 20.58 tokens</li><li>max: 45 tokens</li></ul> | |
|
* Samples: |
|
| positive | anchor | |
|
|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------| |
|
| <code>Walmart Inc. reported total revenues of $611,289 million for the fiscal year ended January 31, 2023.</code> | <code>What was Walmart Inc.'s total revenue in the fiscal year ended January 31, 2023?</code> | |
|
| <code>The total equity balance of Visa Inc. as of September 30, 2023 was $38,733 million.</code> | <code>What was the total equity of Visa Inc. as of September 30, 2023?</code> | |
|
| <code>Nike incorporates new technologies in its product design by using market intelligence and research, which helps its design teams identify opportunities to leverage these technologies in existing categories to respond to consumer preferences.</code> | <code>How does Nike incorporate new technologies in its product design?</code> | |
|
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: |
|
```json |
|
{ |
|
"loss": "MultipleNegativesRankingLoss", |
|
"matryoshka_dims": [ |
|
768, |
|
512, |
|
256, |
|
128, |
|
64 |
|
], |
|
"matryoshka_weights": [ |
|
1, |
|
1, |
|
1, |
|
1, |
|
1 |
|
], |
|
"n_dims_per_step": -1 |
|
} |
|
``` |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `eval_strategy`: epoch |
|
- `per_device_train_batch_size`: 32 |
|
- `per_device_eval_batch_size`: 16 |
|
- `gradient_accumulation_steps`: 16 |
|
- `learning_rate`: 2e-05 |
|
- `num_train_epochs`: 4 |
|
- `lr_scheduler_type`: cosine |
|
- `warmup_ratio`: 0.1 |
|
- `bf16`: True |
|
- `tf32`: True |
|
- `load_best_model_at_end`: True |
|
- `optim`: adamw_torch_fused |
|
- `batch_sampler`: no_duplicates |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: epoch |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 32 |
|
- `per_device_eval_batch_size`: 16 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 16 |
|
- `eval_accumulation_steps`: None |
|
- `torch_empty_cache_steps`: None |
|
- `learning_rate`: 2e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1.0 |
|
- `num_train_epochs`: 4 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: cosine |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.1 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: True |
|
- `fp16`: False |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: True |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: True |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch_fused |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: False |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `eval_on_start`: False |
|
- `eval_use_gather_object`: False |
|
- `batch_sampler`: no_duplicates |
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 | |
|
|:----------:|:------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:| |
|
| 0.8122 | 10 | 1.5521 | - | - | - | - | - | |
|
| 0.9746 | 12 | - | 0.7178 | 0.7352 | 0.7404 | 0.6833 | 0.7422 | |
|
| 1.6244 | 20 | 0.6753 | - | - | - | - | - | |
|
| 1.9492 | 24 | - | 0.7340 | 0.7452 | 0.7524 | 0.7057 | 0.7561 | |
|
| 2.4365 | 30 | 0.4611 | - | - | - | - | - | |
|
| 2.9239 | 36 | - | 0.7392 | 0.7509 | 0.7560 | 0.7103 | 0.7588 | |
|
| 3.2487 | 40 | 0.3763 | - | - | - | - | - | |
|
| **3.8985** | **48** | **-** | **0.7407** | **0.7533** | **0.7567** | **0.711** | **0.7618** | |
|
|
|
* The bold row denotes the saved checkpoint. |
|
|
|
### Framework Versions |
|
- Python: 3.10.12 |
|
- Sentence Transformers: 3.0.1 |
|
- Transformers: 4.44.2 |
|
- PyTorch: 2.4.0+cu121 |
|
- Accelerate: 0.32.1 |
|
- Datasets: 2.21.0 |
|
- Tokenizers: 0.19.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
#### MatryoshkaLoss |
|
```bibtex |
|
@misc{kusupati2024matryoshka, |
|
title={Matryoshka Representation Learning}, |
|
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, |
|
year={2024}, |
|
eprint={2205.13147}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.LG} |
|
} |
|
``` |
|
|
|
#### MultipleNegativesRankingLoss |
|
```bibtex |
|
@misc{henderson2017efficient, |
|
title={Efficient Natural Language Response Suggestion for Smart Reply}, |
|
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, |
|
year={2017}, |
|
eprint={1705.00652}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |