tomaarsen's picture
tomaarsen HF staff
Update model name
ba19a22 verified
metadata
language:
  - en
library_name: sentence-transformers
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated
base_model: microsoft/mpnet-base
metrics:
  - pearson_cosine
  - spearman_cosine
  - pearson_manhattan
  - spearman_manhattan
  - pearson_euclidean
  - spearman_euclidean
  - pearson_dot
  - spearman_dot
  - pearson_max
  - spearman_max
widget:
  - source_sentence: 'Really? No kidding! '
    sentences:
      - yeah really no kidding
      - At the end of the fourth century was when baked goods flourished.
      - The campaigns seem to reach a new pool of contributors.
  - source_sentence: A sleeping man.
    sentences:
      - Two men are sleeping.
      - Someone is selling oranges
      - the family is young
  - source_sentence: a guy on a bike
    sentences:
      - A tall person on a bike
      - A man is on a frozen lake.
      - The women throw food at the kids
  - source_sentence: yeah really no kidding
    sentences:
      - oh uh-huh well no they wouldn't would they no
      - yeah i mean just when uh the they military paid for her education
      - The campaigns seem to reach a new pool of contributors.
  - source_sentence: He ran like an athlete.
    sentences:
      - ' Then he ran.'
      - yeah i mean just when uh the they military paid for her education
      - >-
        Similarly, OIM revised the electronic Grant Renewal Application to
        accommodate new information sought by LSC and to ensure greater ease for
        users.
pipeline_tag: sentence-similarity
co2_eq_emissions:
  emissions: 17.515467907816664
  source: codecarbon
  training_type: fine-tuning
  on_cloud: false
  cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
  ram_total_size: 31.777088165283203
  hours_used: 0.13
  hardware_used: 1 x NVIDIA GeForce RTX 3090
model-index:
  - name: SentenceTransformer based on microsoft/mpnet-base
    results:
      - task:
          type: semantic-similarity
          name: Semantic Similarity
        dataset:
          name: sts dev
          type: sts-dev
        metrics:
          - type: pearson_cosine
            value: 0.7331234146933103
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.7435439430716654
            name: Spearman Cosine
          - type: pearson_manhattan
            value: 0.7389474504545281
            name: Pearson Manhattan
          - type: spearman_manhattan
            value: 0.7473580293303098
            name: Spearman Manhattan
          - type: pearson_euclidean
            value: 0.7356264396007131
            name: Pearson Euclidean
          - type: spearman_euclidean
            value: 0.7436137284782617
            name: Spearman Euclidean
          - type: pearson_dot
            value: 0.7093073700072118
            name: Pearson Dot
          - type: spearman_dot
            value: 0.7150453113301433
            name: Spearman Dot
          - type: pearson_max
            value: 0.7389474504545281
            name: Pearson Max
          - type: spearman_max
            value: 0.7473580293303098
            name: Spearman Max
      - task:
          type: semantic-similarity
          name: Semantic Similarity
        dataset:
          name: sts test
          type: sts-test
        metrics:
          - type: pearson_cosine
            value: 0.6750510843835755
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.6615639695746663
            name: Spearman Cosine
          - type: pearson_manhattan
            value: 0.6718085205234632
            name: Pearson Manhattan
          - type: spearman_manhattan
            value: 0.6589482932175834
            name: Spearman Manhattan
          - type: pearson_euclidean
            value: 0.6693170762111229
            name: Pearson Euclidean
          - type: spearman_euclidean
            value: 0.6578210069410166
            name: Spearman Euclidean
          - type: pearson_dot
            value: 0.6490291380804283
            name: Pearson Dot
          - type: spearman_dot
            value: 0.6335192601696299
            name: Spearman Dot
          - type: pearson_max
            value: 0.6750510843835755
            name: Pearson Max
          - type: spearman_max
            value: 0.6615639695746663
            name: Spearman Max

SentenceTransformer based on microsoft/mpnet-base

This is a sentence-transformers model finetuned from microsoft/mpnet-base on the multi_nli, snli and stsb datasets. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: microsoft/mpnet-base
  • Maximum Sequence Length: 384 tokens
  • Output Dimensionality: 768 tokens
  • Training Datasets:
  • Language: en

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("tomaarsen/st-v3-test-mpnet-base-allnli-stsb")
# Run inference
sentences = [
    "He ran like an athlete.",
    " Then he ran.",
    "yeah i mean just when uh the they military paid for her education",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

Evaluation

Metrics

Semantic Similarity

Metric Value
pearson_cosine 0.7331
spearman_cosine 0.7435
pearson_manhattan 0.7389
spearman_manhattan 0.7474
pearson_euclidean 0.7356
spearman_euclidean 0.7436
pearson_dot 0.7093
spearman_dot 0.715
pearson_max 0.7389
spearman_max 0.7474

Semantic Similarity

Metric Value
pearson_cosine 0.6751
spearman_cosine 0.6616
pearson_manhattan 0.6718
spearman_manhattan 0.6589
pearson_euclidean 0.6693
spearman_euclidean 0.6578
pearson_dot 0.649
spearman_dot 0.6335
pearson_max 0.6751
spearman_max 0.6616

Training Details

Training Datasets

multi_nli

  • Dataset: multi_nli at da70db2
  • Size: 10,000 training samples
  • Columns: premise, hypothesis, and label
  • Approximate statistics based on the first 1000 samples:
    premise hypothesis label
    type string string int
    details
    • min: 4 tokens
    • mean: 26.95 tokens
    • max: 189 tokens
    • min: 5 tokens
    • mean: 14.11 tokens
    • max: 49 tokens
    • 0: ~34.30%
    • 1: ~28.20%
    • 2: ~37.50%
  • Samples:
    premise hypothesis label
    Conceptually cream skimming has two basic dimensions - product and geography. Product and geography are what make cream skimming work. 1
    you know during the season and i guess at at your level uh you lose them to the next level if if they decide to recall the the parent team the Braves decide to call to recall a guy from triple A then a double A guy goes up to replace him and a single A guy goes up to replace him You lose the things to the following level if the people recall. 0
    One of our number will carry out your instructions minutely. A member of my team will execute your orders with immense precision. 0
  • Loss: sentence_transformers.losses.SoftmaxLoss.SoftmaxLoss

snli

  • Dataset: snli at cdb5c3d
  • Size: 10,000 training samples
  • Columns: snli_premise, hypothesis, and label
  • Approximate statistics based on the first 1000 samples:
    snli_premise hypothesis label
    type string string int
    details
    • min: 6 tokens
    • mean: 17.38 tokens
    • max: 52 tokens
    • min: 4 tokens
    • mean: 10.7 tokens
    • max: 31 tokens
    • 0: ~33.40%
    • 1: ~33.30%
    • 2: ~33.30%
  • Samples:
    snli_premise hypothesis label
    A person on a horse jumps over a broken down airplane. A person is training his horse for a competition. 1
    A person on a horse jumps over a broken down airplane. A person is at a diner, ordering an omelette. 2
    A person on a horse jumps over a broken down airplane. A person is outdoors, on a horse. 0
  • Loss: sentence_transformers.losses.SoftmaxLoss.SoftmaxLoss

stsb

  • Dataset: stsb at 8913289
  • Size: 5,749 training samples
  • Columns: sentence1, sentence2, and label
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2 label
    type string string float
    details
    • min: 6 tokens
    • mean: 10.0 tokens
    • max: 28 tokens
    • min: 5 tokens
    • mean: 9.95 tokens
    • max: 25 tokens
    • min: 0.0
    • mean: 0.54
    • max: 1.0
  • Samples:
    sentence1 sentence2 label
    A plane is taking off. An air plane is taking off. 1.0
    A man is playing a large flute. A man is playing a flute. 0.76
    A man is spreading shreded cheese on a pizza. A man is spreading shredded cheese on an uncooked pizza. 0.76
  • Loss: sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss with these parameters:
    {
        "loss_fct": "torch.nn.modules.loss.MSELoss"
    }
    

Evaluation Datasets

multi_nli

  • Dataset: multi_nli at da70db2
  • Size: 100 evaluation samples
  • Columns: premise, hypothesis, and label
  • Approximate statistics based on the first 1000 samples:
    premise hypothesis label
    type string string int
    details
    • min: 5 tokens
    • mean: 27.67 tokens
    • max: 138 tokens
    • min: 6 tokens
    • mean: 13.48 tokens
    • max: 27 tokens
    • 0: ~35.00%
    • 1: ~31.00%
    • 2: ~34.00%
  • Samples:
    premise hypothesis label
    The new rights are nice enough Everyone really likes the newest benefits 1
    This site includes a list of all award winners and a searchable database of Government Executive articles. The Government Executive articles housed on the website are not able to be searched. 2
    uh i don't know i i have mixed emotions about him uh sometimes i like him but at the same times i love to see somebody beat him I like him for the most part, but would still enjoy seeing someone beat him. 0
  • Loss: sentence_transformers.losses.SoftmaxLoss.SoftmaxLoss

snli

  • Dataset: snli at cdb5c3d
  • Size: 9,842 evaluation samples
  • Columns: snli_premise, hypothesis, and label
  • Approximate statistics based on the first 1000 samples:
    snli_premise hypothesis label
    type string string int
    details
    • min: 6 tokens
    • mean: 18.44 tokens
    • max: 57 tokens
    • min: 5 tokens
    • mean: 10.57 tokens
    • max: 25 tokens
    • 0: ~33.10%
    • 1: ~33.30%
    • 2: ~33.60%
  • Samples:
    snli_premise hypothesis label
    Two women are embracing while holding to go packages. The sisters are hugging goodbye while holding to go packages after just eating lunch. 1
    Two women are embracing while holding to go packages. Two woman are holding packages. 0
    Two women are embracing while holding to go packages. The men are fighting outside a deli. 2
  • Loss: sentence_transformers.losses.SoftmaxLoss.SoftmaxLoss

stsb

  • Dataset: stsb at 8913289
  • Size: 1,500 evaluation samples
  • Columns: sentence1, sentence2, and label
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2 label
    type string string float
    details
    • min: 5 tokens
    • mean: 15.1 tokens
    • max: 45 tokens
    • min: 6 tokens
    • mean: 15.11 tokens
    • max: 53 tokens
    • min: 0.0
    • mean: 0.47
    • max: 1.0
  • Samples:
    sentence1 sentence2 label
    A man with a hard hat is dancing. A man wearing a hard hat is dancing. 1.0
    A young child is riding a horse. A child is riding a horse. 0.95
    A man is feeding a mouse to a snake. The man is feeding a mouse to the snake. 1.0
  • Loss: sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss with these parameters:
    {
        "loss_fct": "torch.nn.modules.loss.MSELoss"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • per_device_train_batch_size: 128
  • per_device_eval_batch_size: 128
  • learning_rate: 2e-05
  • num_train_epochs: 1
  • warmup_ratio: 0.1
  • seed: 33
  • bf16: True

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • prediction_loss_only: False
  • per_device_train_batch_size: 128
  • per_device_eval_batch_size: 128
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 33
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: None
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • round_robin_sampler: False

Training Logs

Epoch Step Training Loss multi nli loss snli loss stsb loss sts-dev spearman cosine
0.0493 10 0.9199 1.1019 1.1017 0.3016 0.6324
0.0985 20 1.0063 1.1000 1.0966 0.2635 0.6093
0.1478 30 1.002 1.0995 1.0908 0.1766 0.5328
0.1970 40 0.7946 1.0980 1.0913 0.0923 0.5991
0.2463 50 0.9891 1.0967 1.0781 0.0912 0.6457
0.2956 60 0.784 1.0938 1.0699 0.0934 0.6629
0.3448 70 0.6735 1.0940 1.0728 0.0640 0.7538
0.3941 80 0.7713 1.0893 1.0676 0.0612 0.7653
0.4433 90 0.9772 1.0870 1.0573 0.0636 0.7621
0.4926 100 0.8613 1.0862 1.0515 0.0632 0.7583
0.5419 110 0.7528 1.0814 1.0397 0.0617 0.7536
0.5911 120 0.6541 1.0854 1.0329 0.0657 0.7512
0.6404 130 1.051 1.0658 1.0211 0.0607 0.7340
0.6897 140 0.8516 1.0631 1.0171 0.0587 0.7467
0.7389 150 0.7484 1.0563 1.0122 0.0556 0.7537
0.7882 160 0.7368 1.0534 1.0100 0.0588 0.7526
0.8374 170 0.8373 1.0498 1.0030 0.0565 0.7491
0.8867 180 0.9311 1.0387 0.9981 0.0588 0.7302
0.9360 190 0.5445 1.0357 0.9967 0.0565 0.7382
0.9852 200 0.9154 1.0359 0.9964 0.0556 0.7435

Environmental Impact

Carbon emissions were measured using CodeCarbon.

  • Carbon Emitted: 0.018 kg of CO2
  • Hours Used: 0.13 hours

Training Hardware

  • On Cloud: No
  • GPU Model: 1 x NVIDIA GeForce RTX 3090
  • CPU Model: 13th Gen Intel(R) Core(TM) i7-13700K
  • RAM Size: 31.78 GB

Framework Versions

  • Python: 3.11.6
  • Sentence Transformers: 2.7.0.dev0
  • Transformers: 4.39.3
  • PyTorch: 2.1.0+cu121
  • Accelerate: 0.26.1
  • Datasets: 2.18.0
  • Tokenizers: 0.15.2

Citation

BibTeX

Sentence Transformers and SoftmaxLoss

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}