File size: 31,144 Bytes
477b3ec e2a1855 477b3ec e2a1855 477b3ec e2a1855 477b3ec e2a1855 477b3ec e2a1855 477b3ec e2a1855 477b3ec e2a1855 477b3ec e2a1855 477b3ec e2a1855 477b3ec e2a1855 477b3ec e2a1855 477b3ec e2a1855 477b3ec e2a1855 477b3ec e2a1855 477b3ec ba19a22 477b3ec e2a1855 477b3ec e2a1855 477b3ec e2a1855 477b3ec e2a1855 477b3ec e2a1855 477b3ec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 |
---
language:
- en
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated
base_model: microsoft/mpnet-base
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
widget:
- source_sentence: 'Really? No kidding! '
sentences:
- yeah really no kidding
- At the end of the fourth century was when baked goods flourished.
- The campaigns seem to reach a new pool of contributors.
- source_sentence: A sleeping man.
sentences:
- Two men are sleeping.
- Someone is selling oranges
- the family is young
- source_sentence: a guy on a bike
sentences:
- A tall person on a bike
- A man is on a frozen lake.
- The women throw food at the kids
- source_sentence: yeah really no kidding
sentences:
- oh uh-huh well no they wouldn't would they no
- yeah i mean just when uh the they military paid for her education
- The campaigns seem to reach a new pool of contributors.
- source_sentence: He ran like an athlete.
sentences:
- ' Then he ran.'
- yeah i mean just when uh the they military paid for her education
- Similarly, OIM revised the electronic Grant Renewal Application to accommodate
new information sought by LSC and to ensure greater ease for users.
pipeline_tag: sentence-similarity
co2_eq_emissions:
emissions: 17.515467907816664
source: codecarbon
training_type: fine-tuning
on_cloud: false
cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
ram_total_size: 31.777088165283203
hours_used: 0.13
hardware_used: 1 x NVIDIA GeForce RTX 3090
model-index:
- name: SentenceTransformer based on microsoft/mpnet-base
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts dev
type: sts-dev
metrics:
- type: pearson_cosine
value: 0.7331234146933103
name: Pearson Cosine
- type: spearman_cosine
value: 0.7435439430716654
name: Spearman Cosine
- type: pearson_manhattan
value: 0.7389474504545281
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.7473580293303098
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.7356264396007131
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.7436137284782617
name: Spearman Euclidean
- type: pearson_dot
value: 0.7093073700072118
name: Pearson Dot
- type: spearman_dot
value: 0.7150453113301433
name: Spearman Dot
- type: pearson_max
value: 0.7389474504545281
name: Pearson Max
- type: spearman_max
value: 0.7473580293303098
name: Spearman Max
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test
type: sts-test
metrics:
- type: pearson_cosine
value: 0.6750510843835755
name: Pearson Cosine
- type: spearman_cosine
value: 0.6615639695746663
name: Spearman Cosine
- type: pearson_manhattan
value: 0.6718085205234632
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.6589482932175834
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.6693170762111229
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.6578210069410166
name: Spearman Euclidean
- type: pearson_dot
value: 0.6490291380804283
name: Pearson Dot
- type: spearman_dot
value: 0.6335192601696299
name: Spearman Dot
- type: pearson_max
value: 0.6750510843835755
name: Pearson Max
- type: spearman_max
value: 0.6615639695746663
name: Spearman Max
---
# SentenceTransformer based on microsoft/mpnet-base
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [microsoft/mpnet-base](https://huggingface.co./microsoft/mpnet-base) on the [multi_nli](https://huggingface.co./datasets/nyu-mll/multi_nli), [snli](https://huggingface.co./datasets/stanfordnlp/snli) and [stsb](https://huggingface.co./datasets/mteb/stsbenchmark-sts) datasets. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [microsoft/mpnet-base](https://huggingface.co./microsoft/mpnet-base)
- **Maximum Sequence Length:** 384 tokens
- **Output Dimensionality:** 768 tokens
- **Training Datasets:**
- [multi_nli](https://huggingface.co./datasets/nyu-mll/multi_nli)
- [snli](https://huggingface.co./datasets/stanfordnlp/snli)
- [stsb](https://huggingface.co./datasets/mteb/stsbenchmark-sts)
- **Language:** en
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co./models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("tomaarsen/st-v3-test-mpnet-base-allnli-stsb")
# Run inference
sentences = [
"He ran like an athlete.",
" Then he ran.",
"yeah i mean just when uh the they military paid for her education",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Semantic Similarity
* Dataset: `sts-dev`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.7331 |
| **spearman_cosine** | **0.7435** |
| pearson_manhattan | 0.7389 |
| spearman_manhattan | 0.7474 |
| pearson_euclidean | 0.7356 |
| spearman_euclidean | 0.7436 |
| pearson_dot | 0.7093 |
| spearman_dot | 0.715 |
| pearson_max | 0.7389 |
| spearman_max | 0.7474 |
#### Semantic Similarity
* Dataset: `sts-test`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.6751 |
| **spearman_cosine** | **0.6616** |
| pearson_manhattan | 0.6718 |
| spearman_manhattan | 0.6589 |
| pearson_euclidean | 0.6693 |
| spearman_euclidean | 0.6578 |
| pearson_dot | 0.649 |
| spearman_dot | 0.6335 |
| pearson_max | 0.6751 |
| spearman_max | 0.6616 |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Datasets
#### multi_nli
* Dataset: [multi_nli](https://huggingface.co./datasets/nyu-mll/multi_nli) at [da70db2](https://huggingface.co./datasets/nyu-mll/multi_nli/tree/da70db2af9d09693783c3320c4249840212ee221)
* Size: 10,000 training samples
* Columns: <code>premise</code>, <code>hypothesis</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | premise | hypothesis | label |
|:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------|
| type | string | string | int |
| details | <ul><li>min: 4 tokens</li><li>mean: 26.95 tokens</li><li>max: 189 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 14.11 tokens</li><li>max: 49 tokens</li></ul> | <ul><li>0: ~34.30%</li><li>1: ~28.20%</li><li>2: ~37.50%</li></ul> |
* Samples:
| premise | hypothesis | label |
|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------|
| <code>Conceptually cream skimming has two basic dimensions - product and geography.</code> | <code>Product and geography are what make cream skimming work. </code> | <code>1</code> |
| <code>you know during the season and i guess at at your level uh you lose them to the next level if if they decide to recall the the parent team the Braves decide to call to recall a guy from triple A then a double A guy goes up to replace him and a single A guy goes up to replace him</code> | <code>You lose the things to the following level if the people recall.</code> | <code>0</code> |
| <code>One of our number will carry out your instructions minutely.</code> | <code>A member of my team will execute your orders with immense precision.</code> | <code>0</code> |
* Loss: [<code>sentence_transformers.losses.SoftmaxLoss.SoftmaxLoss</code>](https://sbert.net/docs/package_reference/losses.html#softmaxloss)
#### snli
* Dataset: [snli](https://huggingface.co./datasets/stanfordnlp/snli) at [cdb5c3d](https://huggingface.co./datasets/stanfordnlp/snli/tree/cdb5c3d5eed6ead6e5a341c8e56e669bb666725b)
* Size: 10,000 training samples
* Columns: <code>snli_premise</code>, <code>hypothesis</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | snli_premise | hypothesis | label |
|:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:-------------------------------------------------------------------|
| type | string | string | int |
| details | <ul><li>min: 6 tokens</li><li>mean: 17.38 tokens</li><li>max: 52 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 10.7 tokens</li><li>max: 31 tokens</li></ul> | <ul><li>0: ~33.40%</li><li>1: ~33.30%</li><li>2: ~33.30%</li></ul> |
* Samples:
| snli_premise | hypothesis | label |
|:--------------------------------------------------------------------|:---------------------------------------------------------------|:---------------|
| <code>A person on a horse jumps over a broken down airplane.</code> | <code>A person is training his horse for a competition.</code> | <code>1</code> |
| <code>A person on a horse jumps over a broken down airplane.</code> | <code>A person is at a diner, ordering an omelette.</code> | <code>2</code> |
| <code>A person on a horse jumps over a broken down airplane.</code> | <code>A person is outdoors, on a horse.</code> | <code>0</code> |
* Loss: [<code>sentence_transformers.losses.SoftmaxLoss.SoftmaxLoss</code>](https://sbert.net/docs/package_reference/losses.html#softmaxloss)
#### stsb
* Dataset: [stsb](https://huggingface.co./datasets/mteb/stsbenchmark-sts) at [8913289](https://huggingface.co./datasets/mteb/stsbenchmark-sts/tree/8913289635987208e6e7c72789e4be2fe94b6abd)
* Size: 5,749 training samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | label |
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details | <ul><li>min: 6 tokens</li><li>mean: 10.0 tokens</li><li>max: 28 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 9.95 tokens</li><li>max: 25 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.54</li><li>max: 1.0</li></ul> |
* Samples:
| sentence1 | sentence2 | label |
|:-----------------------------------------------------------|:----------------------------------------------------------------------|:------------------|
| <code>A plane is taking off.</code> | <code>An air plane is taking off.</code> | <code>1.0</code> |
| <code>A man is playing a large flute.</code> | <code>A man is playing a flute.</code> | <code>0.76</code> |
| <code>A man is spreading shreded cheese on a pizza.</code> | <code>A man is spreading shredded cheese on an uncooked pizza.</code> | <code>0.76</code> |
* Loss: [<code>sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/losses.html#cosinesimilarityloss) with these parameters:
```json
{
"loss_fct": "torch.nn.modules.loss.MSELoss"
}
```
### Evaluation Datasets
#### multi_nli
* Dataset: [multi_nli](https://huggingface.co./datasets/nyu-mll/multi_nli) at [da70db2](https://huggingface.co./datasets/nyu-mll/multi_nli/tree/da70db2af9d09693783c3320c4249840212ee221)
* Size: 100 evaluation samples
* Columns: <code>premise</code>, <code>hypothesis</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | premise | hypothesis | label |
|:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------|
| type | string | string | int |
| details | <ul><li>min: 5 tokens</li><li>mean: 27.67 tokens</li><li>max: 138 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 13.48 tokens</li><li>max: 27 tokens</li></ul> | <ul><li>0: ~35.00%</li><li>1: ~31.00%</li><li>2: ~34.00%</li></ul> |
* Samples:
| premise | hypothesis | label |
|:---------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------|:---------------|
| <code>The new rights are nice enough</code> | <code>Everyone really likes the newest benefits </code> | <code>1</code> |
| <code>This site includes a list of all award winners and a searchable database of Government Executive articles.</code> | <code>The Government Executive articles housed on the website are not able to be searched.</code> | <code>2</code> |
| <code>uh i don't know i i have mixed emotions about him uh sometimes i like him but at the same times i love to see somebody beat him</code> | <code>I like him for the most part, but would still enjoy seeing someone beat him.</code> | <code>0</code> |
* Loss: [<code>sentence_transformers.losses.SoftmaxLoss.SoftmaxLoss</code>](https://sbert.net/docs/package_reference/losses.html#softmaxloss)
#### snli
* Dataset: [snli](https://huggingface.co./datasets/stanfordnlp/snli) at [cdb5c3d](https://huggingface.co./datasets/stanfordnlp/snli/tree/cdb5c3d5eed6ead6e5a341c8e56e669bb666725b)
* Size: 9,842 evaluation samples
* Columns: <code>snli_premise</code>, <code>hypothesis</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | snli_premise | hypothesis | label |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------|
| type | string | string | int |
| details | <ul><li>min: 6 tokens</li><li>mean: 18.44 tokens</li><li>max: 57 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 10.57 tokens</li><li>max: 25 tokens</li></ul> | <ul><li>0: ~33.10%</li><li>1: ~33.30%</li><li>2: ~33.60%</li></ul> |
* Samples:
| snli_premise | hypothesis | label |
|:-------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------|:---------------|
| <code>Two women are embracing while holding to go packages.</code> | <code>The sisters are hugging goodbye while holding to go packages after just eating lunch.</code> | <code>1</code> |
| <code>Two women are embracing while holding to go packages.</code> | <code>Two woman are holding packages.</code> | <code>0</code> |
| <code>Two women are embracing while holding to go packages.</code> | <code>The men are fighting outside a deli.</code> | <code>2</code> |
* Loss: [<code>sentence_transformers.losses.SoftmaxLoss.SoftmaxLoss</code>](https://sbert.net/docs/package_reference/losses.html#softmaxloss)
#### stsb
* Dataset: [stsb](https://huggingface.co./datasets/mteb/stsbenchmark-sts) at [8913289](https://huggingface.co./datasets/mteb/stsbenchmark-sts/tree/8913289635987208e6e7c72789e4be2fe94b6abd)
* Size: 1,500 evaluation samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | label |
|:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details | <ul><li>min: 5 tokens</li><li>mean: 15.1 tokens</li><li>max: 45 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 15.11 tokens</li><li>max: 53 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.47</li><li>max: 1.0</li></ul> |
* Samples:
| sentence1 | sentence2 | label |
|:--------------------------------------------------|:------------------------------------------------------|:------------------|
| <code>A man with a hard hat is dancing.</code> | <code>A man wearing a hard hat is dancing.</code> | <code>1.0</code> |
| <code>A young child is riding a horse.</code> | <code>A child is riding a horse.</code> | <code>0.95</code> |
| <code>A man is feeding a mouse to a snake.</code> | <code>The man is feeding a mouse to the snake.</code> | <code>1.0</code> |
* Loss: [<code>sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/losses.html#cosinesimilarityloss) with these parameters:
```json
{
"loss_fct": "torch.nn.modules.loss.MSELoss"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- per_device_train_batch_size: 128
- per_device_eval_batch_size: 128
- learning_rate: 2e-05
- num_train_epochs: 1
- warmup_ratio: 0.1
- seed: 33
- bf16: True
#### All Hyperparameters
<details><summary>Click to expand</summary>
- overwrite_output_dir: False
- do_predict: False
- prediction_loss_only: False
- per_device_train_batch_size: 128
- per_device_eval_batch_size: 128
- per_gpu_train_batch_size: None
- per_gpu_eval_batch_size: None
- gradient_accumulation_steps: 1
- eval_accumulation_steps: None
- learning_rate: 2e-05
- weight_decay: 0.0
- adam_beta1: 0.9
- adam_beta2: 0.999
- adam_epsilon: 1e-08
- max_grad_norm: 1.0
- num_train_epochs: 1
- max_steps: -1
- lr_scheduler_type: linear
- lr_scheduler_kwargs: {}
- warmup_ratio: 0.1
- warmup_steps: 0
- log_level: passive
- log_level_replica: warning
- log_on_each_node: True
- logging_nan_inf_filter: True
- save_safetensors: True
- save_on_each_node: False
- save_only_model: False
- no_cuda: False
- use_cpu: False
- use_mps_device: False
- seed: 33
- data_seed: None
- jit_mode_eval: False
- use_ipex: False
- bf16: True
- fp16: False
- fp16_opt_level: O1
- half_precision_backend: auto
- bf16_full_eval: False
- fp16_full_eval: False
- tf32: None
- local_rank: 0
- ddp_backend: None
- tpu_num_cores: None
- tpu_metrics_debug: False
- debug: []
- dataloader_drop_last: False
- dataloader_num_workers: 0
- dataloader_prefetch_factor: None
- past_index: -1
- disable_tqdm: False
- remove_unused_columns: True
- label_names: None
- load_best_model_at_end: False
- ignore_data_skip: False
- fsdp: []
- fsdp_min_num_params: 0
- fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- fsdp_transformer_layer_cls_to_wrap: None
- accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True}
- deepspeed: None
- label_smoothing_factor: 0.0
- optim: adamw_torch
- optim_args: None
- adafactor: False
- group_by_length: False
- length_column_name: length
- ddp_find_unused_parameters: None
- ddp_bucket_cap_mb: None
- ddp_broadcast_buffers: None
- dataloader_pin_memory: True
- dataloader_persistent_workers: False
- skip_memory_metrics: True
- use_legacy_prediction_loop: False
- push_to_hub: False
- resume_from_checkpoint: None
- hub_model_id: None
- hub_strategy: every_save
- hub_private_repo: False
- hub_always_push: False
- gradient_checkpointing: False
- gradient_checkpointing_kwargs: None
- include_inputs_for_metrics: False
- fp16_backend: auto
- push_to_hub_model_id: None
- push_to_hub_organization: None
- mp_parameters:
- auto_find_batch_size: False
- full_determinism: False
- torchdynamo: None
- ray_scope: last
- ddp_timeout: 1800
- torch_compile: False
- torch_compile_backend: None
- torch_compile_mode: None
- dispatch_batches: None
- split_batches: None
- include_tokens_per_second: False
- include_num_input_tokens_seen: False
- neftune_noise_alpha: None
- optim_target_modules: None
- round_robin_sampler: False
</details>
### Training Logs
| Epoch | Step | Training Loss | multi nli loss | snli loss | stsb loss | sts-dev spearman cosine |
|:------:|:----:|:-------------:|:--------------:|:---------:|:---------:|:-----------------------:|
| 0.0493 | 10 | 0.9199 | 1.1019 | 1.1017 | 0.3016 | 0.6324 |
| 0.0985 | 20 | 1.0063 | 1.1000 | 1.0966 | 0.2635 | 0.6093 |
| 0.1478 | 30 | 1.002 | 1.0995 | 1.0908 | 0.1766 | 0.5328 |
| 0.1970 | 40 | 0.7946 | 1.0980 | 1.0913 | 0.0923 | 0.5991 |
| 0.2463 | 50 | 0.9891 | 1.0967 | 1.0781 | 0.0912 | 0.6457 |
| 0.2956 | 60 | 0.784 | 1.0938 | 1.0699 | 0.0934 | 0.6629 |
| 0.3448 | 70 | 0.6735 | 1.0940 | 1.0728 | 0.0640 | 0.7538 |
| 0.3941 | 80 | 0.7713 | 1.0893 | 1.0676 | 0.0612 | 0.7653 |
| 0.4433 | 90 | 0.9772 | 1.0870 | 1.0573 | 0.0636 | 0.7621 |
| 0.4926 | 100 | 0.8613 | 1.0862 | 1.0515 | 0.0632 | 0.7583 |
| 0.5419 | 110 | 0.7528 | 1.0814 | 1.0397 | 0.0617 | 0.7536 |
| 0.5911 | 120 | 0.6541 | 1.0854 | 1.0329 | 0.0657 | 0.7512 |
| 0.6404 | 130 | 1.051 | 1.0658 | 1.0211 | 0.0607 | 0.7340 |
| 0.6897 | 140 | 0.8516 | 1.0631 | 1.0171 | 0.0587 | 0.7467 |
| 0.7389 | 150 | 0.7484 | 1.0563 | 1.0122 | 0.0556 | 0.7537 |
| 0.7882 | 160 | 0.7368 | 1.0534 | 1.0100 | 0.0588 | 0.7526 |
| 0.8374 | 170 | 0.8373 | 1.0498 | 1.0030 | 0.0565 | 0.7491 |
| 0.8867 | 180 | 0.9311 | 1.0387 | 0.9981 | 0.0588 | 0.7302 |
| 0.9360 | 190 | 0.5445 | 1.0357 | 0.9967 | 0.0565 | 0.7382 |
| 0.9852 | 200 | 0.9154 | 1.0359 | 0.9964 | 0.0556 | 0.7435 |
### Environmental Impact
Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
- **Carbon Emitted**: 0.018 kg of CO2
- **Hours Used**: 0.13 hours
### Training Hardware
- **On Cloud**: No
- **GPU Model**: 1 x NVIDIA GeForce RTX 3090
- **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K
- **RAM Size**: 31.78 GB
### Framework Versions
- Python: 3.11.6
- Sentence Transformers: 2.7.0.dev0
- Transformers: 4.39.3
- PyTorch: 2.1.0+cu121
- Accelerate: 0.26.1
- Datasets: 2.18.0
- Tokenizers: 0.15.2
## Citation
### BibTeX
#### Sentence Transformers and SoftmaxLoss
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |