File size: 31,144 Bytes
477b3ec
 
 
 
 
 
 
 
 
 
 
e2a1855
 
 
 
 
 
 
 
 
 
477b3ec
e2a1855
477b3ec
e2a1855
477b3ec
e2a1855
 
477b3ec
e2a1855
 
 
 
477b3ec
e2a1855
 
 
477b3ec
 
e2a1855
477b3ec
e2a1855
 
477b3ec
e2a1855
477b3ec
e2a1855
 
477b3ec
 
e2a1855
477b3ec
 
 
 
 
e2a1855
477b3ec
e2a1855
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
477b3ec
 
e2a1855
477b3ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba19a22
477b3ec
 
e2a1855
 
477b3ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e2a1855
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
477b3ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e2a1855
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
477b3ec
 
 
 
 
e2a1855
477b3ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e2a1855
 
477b3ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
---
language:
- en
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated
base_model: microsoft/mpnet-base
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
widget:
- source_sentence: 'Really? No kidding! '
  sentences:
  - yeah really no kidding
  - At the end of the fourth century was when baked goods flourished.
  - The campaigns seem to reach a new pool of contributors.
- source_sentence: A sleeping man.
  sentences:
  - Two men are sleeping.
  - Someone is selling oranges
  - the family is young
- source_sentence: a guy on a bike
  sentences:
  - A tall person on a bike
  - A man is on a frozen lake.
  - The women throw food at the kids
- source_sentence: yeah really no kidding
  sentences:
  - oh uh-huh well no they wouldn't would they no
  - yeah i mean just when uh the they military paid for her education
  - The campaigns seem to reach a new pool of contributors.
- source_sentence: He ran like an athlete.
  sentences:
  - ' Then he ran.'
  - yeah i mean just when uh the they military paid for her education
  - Similarly, OIM revised the electronic Grant Renewal Application to accommodate
    new information sought by LSC and to ensure greater ease for users.
pipeline_tag: sentence-similarity
co2_eq_emissions:
  emissions: 17.515467907816664
  source: codecarbon
  training_type: fine-tuning
  on_cloud: false
  cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
  ram_total_size: 31.777088165283203
  hours_used: 0.13
  hardware_used: 1 x NVIDIA GeForce RTX 3090
model-index:
- name: SentenceTransformer based on microsoft/mpnet-base
  results:
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts dev
      type: sts-dev
    metrics:
    - type: pearson_cosine
      value: 0.7331234146933103
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.7435439430716654
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.7389474504545281
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.7473580293303098
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.7356264396007131
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.7436137284782617
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.7093073700072118
      name: Pearson Dot
    - type: spearman_dot
      value: 0.7150453113301433
      name: Spearman Dot
    - type: pearson_max
      value: 0.7389474504545281
      name: Pearson Max
    - type: spearman_max
      value: 0.7473580293303098
      name: Spearman Max
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts test
      type: sts-test
    metrics:
    - type: pearson_cosine
      value: 0.6750510843835755
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.6615639695746663
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.6718085205234632
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.6589482932175834
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.6693170762111229
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.6578210069410166
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.6490291380804283
      name: Pearson Dot
    - type: spearman_dot
      value: 0.6335192601696299
      name: Spearman Dot
    - type: pearson_max
      value: 0.6750510843835755
      name: Pearson Max
    - type: spearman_max
      value: 0.6615639695746663
      name: Spearman Max
---

# SentenceTransformer based on microsoft/mpnet-base

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [microsoft/mpnet-base](https://huggingface.co./microsoft/mpnet-base) on the [multi_nli](https://huggingface.co./datasets/nyu-mll/multi_nli), [snli](https://huggingface.co./datasets/stanfordnlp/snli) and [stsb](https://huggingface.co./datasets/mteb/stsbenchmark-sts) datasets. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [microsoft/mpnet-base](https://huggingface.co./microsoft/mpnet-base)
- **Maximum Sequence Length:** 384 tokens
- **Output Dimensionality:** 768 tokens
- **Training Datasets:**
    - [multi_nli](https://huggingface.co./datasets/nyu-mll/multi_nli)
    - [snli](https://huggingface.co./datasets/stanfordnlp/snli)
    - [stsb](https://huggingface.co./datasets/mteb/stsbenchmark-sts)
- **Language:** en
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co./models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("tomaarsen/st-v3-test-mpnet-base-allnli-stsb")
# Run inference
sentences = [
    "He ran like an athlete.",
    " Then he ran.",
    "yeah i mean just when uh the they military paid for her education",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Semantic Similarity
* Dataset: `sts-dev`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.7331     |
| **spearman_cosine** | **0.7435** |
| pearson_manhattan   | 0.7389     |
| spearman_manhattan  | 0.7474     |
| pearson_euclidean   | 0.7356     |
| spearman_euclidean  | 0.7436     |
| pearson_dot         | 0.7093     |
| spearman_dot        | 0.715      |
| pearson_max         | 0.7389     |
| spearman_max        | 0.7474     |

#### Semantic Similarity
* Dataset: `sts-test`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.6751     |
| **spearman_cosine** | **0.6616** |
| pearson_manhattan   | 0.6718     |
| spearman_manhattan  | 0.6589     |
| pearson_euclidean   | 0.6693     |
| spearman_euclidean  | 0.6578     |
| pearson_dot         | 0.649      |
| spearman_dot        | 0.6335     |
| pearson_max         | 0.6751     |
| spearman_max        | 0.6616     |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Datasets

#### multi_nli

* Dataset: [multi_nli](https://huggingface.co./datasets/nyu-mll/multi_nli) at [da70db2](https://huggingface.co./datasets/nyu-mll/multi_nli/tree/da70db2af9d09693783c3320c4249840212ee221)
* Size: 10,000 training samples
* Columns: <code>premise</code>, <code>hypothesis</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
  |         | premise                                                                            | hypothesis                                                                        | label                                                              |
  |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                            | int                                                                |
  | details | <ul><li>min: 4 tokens</li><li>mean: 26.95 tokens</li><li>max: 189 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 14.11 tokens</li><li>max: 49 tokens</li></ul> | <ul><li>0: ~34.30%</li><li>1: ~28.20%</li><li>2: ~37.50%</li></ul> |
* Samples:
  | premise                                                                                                                                                                                                                                                                                              | hypothesis                                                                        | label          |
  |:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------|
  | <code>Conceptually cream skimming has two basic dimensions - product and geography.</code>                                                                                                                                                                                                           | <code>Product and geography are what make cream skimming work. </code>            | <code>1</code> |
  | <code>you know during the season and i guess at at your level uh you lose them to the next level if if they decide to recall the the parent team the Braves decide to call to recall a guy from triple A then a double A guy goes up to replace him and a single A guy goes up to replace him</code> | <code>You lose the things to the following level if the people recall.</code>     | <code>0</code> |
  | <code>One of our number will carry out your instructions minutely.</code>                                                                                                                                                                                                                            | <code>A member of my team will execute your orders with immense precision.</code> | <code>0</code> |
* Loss: [<code>sentence_transformers.losses.SoftmaxLoss.SoftmaxLoss</code>](https://sbert.net/docs/package_reference/losses.html#softmaxloss)

#### snli

* Dataset: [snli](https://huggingface.co./datasets/stanfordnlp/snli) at [cdb5c3d](https://huggingface.co./datasets/stanfordnlp/snli/tree/cdb5c3d5eed6ead6e5a341c8e56e669bb666725b)
* Size: 10,000 training samples
* Columns: <code>snli_premise</code>, <code>hypothesis</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
  |         | snli_premise                                                                      | hypothesis                                                                       | label                                                              |
  |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:-------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                           | int                                                                |
  | details | <ul><li>min: 6 tokens</li><li>mean: 17.38 tokens</li><li>max: 52 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 10.7 tokens</li><li>max: 31 tokens</li></ul> | <ul><li>0: ~33.40%</li><li>1: ~33.30%</li><li>2: ~33.30%</li></ul> |
* Samples:
  | snli_premise                                                        | hypothesis                                                     | label          |
  |:--------------------------------------------------------------------|:---------------------------------------------------------------|:---------------|
  | <code>A person on a horse jumps over a broken down airplane.</code> | <code>A person is training his horse for a competition.</code> | <code>1</code> |
  | <code>A person on a horse jumps over a broken down airplane.</code> | <code>A person is at a diner, ordering an omelette.</code>     | <code>2</code> |
  | <code>A person on a horse jumps over a broken down airplane.</code> | <code>A person is outdoors, on a horse.</code>                 | <code>0</code> |
* Loss: [<code>sentence_transformers.losses.SoftmaxLoss.SoftmaxLoss</code>](https://sbert.net/docs/package_reference/losses.html#softmaxloss)

#### stsb

* Dataset: [stsb](https://huggingface.co./datasets/mteb/stsbenchmark-sts) at [8913289](https://huggingface.co./datasets/mteb/stsbenchmark-sts/tree/8913289635987208e6e7c72789e4be2fe94b6abd)
* Size: 5,749 training samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                        | sentence2                                                                        | label                                                          |
  |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------|
  | type    | string                                                                           | string                                                                           | float                                                          |
  | details | <ul><li>min: 6 tokens</li><li>mean: 10.0 tokens</li><li>max: 28 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 9.95 tokens</li><li>max: 25 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.54</li><li>max: 1.0</li></ul> |
* Samples:
  | sentence1                                                  | sentence2                                                             | label             |
  |:-----------------------------------------------------------|:----------------------------------------------------------------------|:------------------|
  | <code>A plane is taking off.</code>                        | <code>An air plane is taking off.</code>                              | <code>1.0</code>  |
  | <code>A man is playing a large flute.</code>               | <code>A man is playing a flute.</code>                                | <code>0.76</code> |
  | <code>A man is spreading shreded cheese on a pizza.</code> | <code>A man is spreading shredded cheese on an uncooked pizza.</code> | <code>0.76</code> |
* Loss: [<code>sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/losses.html#cosinesimilarityloss) with these parameters:
  ```json
  {
      "loss_fct": "torch.nn.modules.loss.MSELoss"
  }
  ```

### Evaluation Datasets

#### multi_nli

* Dataset: [multi_nli](https://huggingface.co./datasets/nyu-mll/multi_nli) at [da70db2](https://huggingface.co./datasets/nyu-mll/multi_nli/tree/da70db2af9d09693783c3320c4249840212ee221)
* Size: 100 evaluation samples
* Columns: <code>premise</code>, <code>hypothesis</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
  |         | premise                                                                            | hypothesis                                                                        | label                                                              |
  |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                            | int                                                                |
  | details | <ul><li>min: 5 tokens</li><li>mean: 27.67 tokens</li><li>max: 138 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 13.48 tokens</li><li>max: 27 tokens</li></ul> | <ul><li>0: ~35.00%</li><li>1: ~31.00%</li><li>2: ~34.00%</li></ul> |
* Samples:
  | premise                                                                                                                                      | hypothesis                                                                                        | label          |
  |:---------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------|:---------------|
  | <code>The new rights are nice enough</code>                                                                                                  | <code>Everyone really likes the newest benefits </code>                                           | <code>1</code> |
  | <code>This site includes a list of all award winners and a searchable database of Government Executive articles.</code>                      | <code>The Government Executive articles housed on the website are not able to be searched.</code> | <code>2</code> |
  | <code>uh i don't know i i have mixed emotions about him uh sometimes i like him but at the same times i love to see somebody beat him</code> | <code>I like him for the most part, but would still enjoy seeing someone beat him.</code>         | <code>0</code> |
* Loss: [<code>sentence_transformers.losses.SoftmaxLoss.SoftmaxLoss</code>](https://sbert.net/docs/package_reference/losses.html#softmaxloss)

#### snli

* Dataset: [snli](https://huggingface.co./datasets/stanfordnlp/snli) at [cdb5c3d](https://huggingface.co./datasets/stanfordnlp/snli/tree/cdb5c3d5eed6ead6e5a341c8e56e669bb666725b)
* Size: 9,842 evaluation samples
* Columns: <code>snli_premise</code>, <code>hypothesis</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
  |         | snli_premise                                                                      | hypothesis                                                                        | label                                                              |
  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                            | int                                                                |
  | details | <ul><li>min: 6 tokens</li><li>mean: 18.44 tokens</li><li>max: 57 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 10.57 tokens</li><li>max: 25 tokens</li></ul> | <ul><li>0: ~33.10%</li><li>1: ~33.30%</li><li>2: ~33.60%</li></ul> |
* Samples:
  | snli_premise                                                       | hypothesis                                                                                         | label          |
  |:-------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------|:---------------|
  | <code>Two women are embracing while holding to go packages.</code> | <code>The sisters are hugging goodbye while holding to go packages after just eating lunch.</code> | <code>1</code> |
  | <code>Two women are embracing while holding to go packages.</code> | <code>Two woman are holding packages.</code>                                                       | <code>0</code> |
  | <code>Two women are embracing while holding to go packages.</code> | <code>The men are fighting outside a deli.</code>                                                  | <code>2</code> |
* Loss: [<code>sentence_transformers.losses.SoftmaxLoss.SoftmaxLoss</code>](https://sbert.net/docs/package_reference/losses.html#softmaxloss)

#### stsb

* Dataset: [stsb](https://huggingface.co./datasets/mteb/stsbenchmark-sts) at [8913289](https://huggingface.co./datasets/mteb/stsbenchmark-sts/tree/8913289635987208e6e7c72789e4be2fe94b6abd)
* Size: 1,500 evaluation samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                        | sentence2                                                                         | label                                                          |
  |:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
  | type    | string                                                                           | string                                                                            | float                                                          |
  | details | <ul><li>min: 5 tokens</li><li>mean: 15.1 tokens</li><li>max: 45 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 15.11 tokens</li><li>max: 53 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.47</li><li>max: 1.0</li></ul> |
* Samples:
  | sentence1                                         | sentence2                                             | label             |
  |:--------------------------------------------------|:------------------------------------------------------|:------------------|
  | <code>A man with a hard hat is dancing.</code>    | <code>A man wearing a hard hat is dancing.</code>     | <code>1.0</code>  |
  | <code>A young child is riding a horse.</code>     | <code>A child is riding a horse.</code>               | <code>0.95</code> |
  | <code>A man is feeding a mouse to a snake.</code> | <code>The man is feeding a mouse to the snake.</code> | <code>1.0</code>  |
* Loss: [<code>sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/losses.html#cosinesimilarityloss) with these parameters:
  ```json
  {
      "loss_fct": "torch.nn.modules.loss.MSELoss"
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- per_device_train_batch_size: 128
- per_device_eval_batch_size: 128
- learning_rate: 2e-05
- num_train_epochs: 1
- warmup_ratio: 0.1
- seed: 33
- bf16: True

#### All Hyperparameters
<details><summary>Click to expand</summary>

- overwrite_output_dir: False
- do_predict: False
- prediction_loss_only: False
- per_device_train_batch_size: 128
- per_device_eval_batch_size: 128
- per_gpu_train_batch_size: None
- per_gpu_eval_batch_size: None
- gradient_accumulation_steps: 1
- eval_accumulation_steps: None
- learning_rate: 2e-05
- weight_decay: 0.0
- adam_beta1: 0.9
- adam_beta2: 0.999
- adam_epsilon: 1e-08
- max_grad_norm: 1.0
- num_train_epochs: 1
- max_steps: -1
- lr_scheduler_type: linear
- lr_scheduler_kwargs: {}
- warmup_ratio: 0.1
- warmup_steps: 0
- log_level: passive
- log_level_replica: warning
- log_on_each_node: True
- logging_nan_inf_filter: True
- save_safetensors: True
- save_on_each_node: False
- save_only_model: False
- no_cuda: False
- use_cpu: False
- use_mps_device: False
- seed: 33
- data_seed: None
- jit_mode_eval: False
- use_ipex: False
- bf16: True
- fp16: False
- fp16_opt_level: O1
- half_precision_backend: auto
- bf16_full_eval: False
- fp16_full_eval: False
- tf32: None
- local_rank: 0
- ddp_backend: None
- tpu_num_cores: None
- tpu_metrics_debug: False
- debug: []
- dataloader_drop_last: False
- dataloader_num_workers: 0
- dataloader_prefetch_factor: None
- past_index: -1
- disable_tqdm: False
- remove_unused_columns: True
- label_names: None
- load_best_model_at_end: False
- ignore_data_skip: False
- fsdp: []
- fsdp_min_num_params: 0
- fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- fsdp_transformer_layer_cls_to_wrap: None
- accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True}
- deepspeed: None
- label_smoothing_factor: 0.0
- optim: adamw_torch
- optim_args: None
- adafactor: False
- group_by_length: False
- length_column_name: length
- ddp_find_unused_parameters: None
- ddp_bucket_cap_mb: None
- ddp_broadcast_buffers: None
- dataloader_pin_memory: True
- dataloader_persistent_workers: False
- skip_memory_metrics: True
- use_legacy_prediction_loop: False
- push_to_hub: False
- resume_from_checkpoint: None
- hub_model_id: None
- hub_strategy: every_save
- hub_private_repo: False
- hub_always_push: False
- gradient_checkpointing: False
- gradient_checkpointing_kwargs: None
- include_inputs_for_metrics: False
- fp16_backend: auto
- push_to_hub_model_id: None
- push_to_hub_organization: None
- mp_parameters: 
- auto_find_batch_size: False
- full_determinism: False
- torchdynamo: None
- ray_scope: last
- ddp_timeout: 1800
- torch_compile: False
- torch_compile_backend: None
- torch_compile_mode: None
- dispatch_batches: None
- split_batches: None
- include_tokens_per_second: False
- include_num_input_tokens_seen: False
- neftune_noise_alpha: None
- optim_target_modules: None
- round_robin_sampler: False

</details>

### Training Logs
| Epoch  | Step | Training Loss | multi nli loss | snli loss | stsb loss | sts-dev spearman cosine |
|:------:|:----:|:-------------:|:--------------:|:---------:|:---------:|:-----------------------:|
| 0.0493 | 10   | 0.9199        | 1.1019         | 1.1017    | 0.3016    | 0.6324                  |
| 0.0985 | 20   | 1.0063        | 1.1000         | 1.0966    | 0.2635    | 0.6093                  |
| 0.1478 | 30   | 1.002         | 1.0995         | 1.0908    | 0.1766    | 0.5328                  |
| 0.1970 | 40   | 0.7946        | 1.0980         | 1.0913    | 0.0923    | 0.5991                  |
| 0.2463 | 50   | 0.9891        | 1.0967         | 1.0781    | 0.0912    | 0.6457                  |
| 0.2956 | 60   | 0.784         | 1.0938         | 1.0699    | 0.0934    | 0.6629                  |
| 0.3448 | 70   | 0.6735        | 1.0940         | 1.0728    | 0.0640    | 0.7538                  |
| 0.3941 | 80   | 0.7713        | 1.0893         | 1.0676    | 0.0612    | 0.7653                  |
| 0.4433 | 90   | 0.9772        | 1.0870         | 1.0573    | 0.0636    | 0.7621                  |
| 0.4926 | 100  | 0.8613        | 1.0862         | 1.0515    | 0.0632    | 0.7583                  |
| 0.5419 | 110  | 0.7528        | 1.0814         | 1.0397    | 0.0617    | 0.7536                  |
| 0.5911 | 120  | 0.6541        | 1.0854         | 1.0329    | 0.0657    | 0.7512                  |
| 0.6404 | 130  | 1.051         | 1.0658         | 1.0211    | 0.0607    | 0.7340                  |
| 0.6897 | 140  | 0.8516        | 1.0631         | 1.0171    | 0.0587    | 0.7467                  |
| 0.7389 | 150  | 0.7484        | 1.0563         | 1.0122    | 0.0556    | 0.7537                  |
| 0.7882 | 160  | 0.7368        | 1.0534         | 1.0100    | 0.0588    | 0.7526                  |
| 0.8374 | 170  | 0.8373        | 1.0498         | 1.0030    | 0.0565    | 0.7491                  |
| 0.8867 | 180  | 0.9311        | 1.0387         | 0.9981    | 0.0588    | 0.7302                  |
| 0.9360 | 190  | 0.5445        | 1.0357         | 0.9967    | 0.0565    | 0.7382                  |
| 0.9852 | 200  | 0.9154        | 1.0359         | 0.9964    | 0.0556    | 0.7435                  |


### Environmental Impact
Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
- **Carbon Emitted**: 0.018 kg of CO2
- **Hours Used**: 0.13 hours

### Training Hardware
- **On Cloud**: No
- **GPU Model**: 1 x NVIDIA GeForce RTX 3090
- **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K
- **RAM Size**: 31.78 GB

### Framework Versions
- Python: 3.11.6
- Sentence Transformers: 2.7.0.dev0
- Transformers: 4.39.3
- PyTorch: 2.1.0+cu121
- Accelerate: 0.26.1
- Datasets: 2.18.0
- Tokenizers: 0.15.2

## Citation

### BibTeX

#### Sentence Transformers and SoftmaxLoss
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->