Update README.md
Browse files
README.md
CHANGED
@@ -9,48 +9,133 @@ tags:
|
|
9 |
- generated
|
10 |
base_model: microsoft/mpnet-base
|
11 |
metrics:
|
12 |
-
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
widget:
|
14 |
-
- source_sentence:
|
15 |
sentences:
|
16 |
-
-
|
17 |
- At the end of the fourth century was when baked goods flourished.
|
18 |
-
-
|
19 |
-
|
20 |
-
- source_sentence: a guy on a bike
|
21 |
sentences:
|
22 |
-
-
|
23 |
-
-
|
24 |
-
-
|
25 |
-
- source_sentence:
|
26 |
sentences:
|
27 |
-
- A
|
28 |
-
-
|
29 |
-
- The
|
30 |
- source_sentence: yeah really no kidding
|
31 |
sentences:
|
32 |
-
- '
|
33 |
- yeah i mean just when uh the they military paid for her education
|
34 |
-
-
|
35 |
-
|
36 |
-
- source_sentence: 'Harlem did a great job '
|
37 |
sentences:
|
38 |
-
- '
|
39 |
- yeah i mean just when uh the they military paid for her education
|
40 |
-
-
|
|
|
41 |
pipeline_tag: sentence-similarity
|
42 |
co2_eq_emissions:
|
43 |
-
emissions:
|
44 |
source: codecarbon
|
45 |
training_type: fine-tuning
|
46 |
on_cloud: false
|
47 |
cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
|
48 |
ram_total_size: 31.777088165283203
|
49 |
-
hours_used: 0.
|
50 |
hardware_used: 1 x NVIDIA GeForce RTX 3090
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
---
|
52 |
|
53 |
-
# SentenceTransformer
|
54 |
|
55 |
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base) on the [multi_nli](https://huggingface.co/datasets/nyu-mll/multi_nli), [snli](https://huggingface.co/datasets/stanfordnlp/snli) and [stsb](https://huggingface.co/datasets/mteb/stsbenchmark-sts) datasets. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
56 |
|
@@ -98,11 +183,11 @@ Then you can load this model and run inference.
|
|
98 |
from sentence_transformers import SentenceTransformer
|
99 |
|
100 |
# Download from the 🤗 Hub
|
101 |
-
model = SentenceTransformer("
|
102 |
# Run inference
|
103 |
sentences = [
|
104 |
-
"
|
105 |
-
"
|
106 |
"yeah i mean just when uh the they military paid for her education",
|
107 |
]
|
108 |
embeddings = model.encode(sentences)
|
@@ -134,6 +219,44 @@ You can finetune this model on your own dataset.
|
|
134 |
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
135 |
-->
|
136 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
<!--
|
138 |
## Bias, Risks and Limitations
|
139 |
|
@@ -391,34 +514,34 @@ You can finetune this model on your own dataset.
|
|
391 |
</details>
|
392 |
|
393 |
### Training Logs
|
394 |
-
| Epoch | Step | Training Loss |
|
395 |
-
|
396 |
-
| 0.0493 | 10 | 0.
|
397 |
-
| 0.0985 | 20 | 1.
|
398 |
-
| 0.1478 | 30 | 1.
|
399 |
-
| 0.1970 | 40 | 0.
|
400 |
-
| 0.2463 | 50 | 0.
|
401 |
-
| 0.2956 | 60 | 0.
|
402 |
-
| 0.3448 | 70 | 0.
|
403 |
-
| 0.3941 | 80 | 0.
|
404 |
-
| 0.4433 | 90 | 0.
|
405 |
-
| 0.4926 | 100 | 0.
|
406 |
-
| 0.5419 | 110 | 0.
|
407 |
-
| 0.5911 | 120 | 0.
|
408 |
-
| 0.6404 | 130 | 1.
|
409 |
-
| 0.6897 | 140 | 0.
|
410 |
-
| 0.7389 | 150 | 0.
|
411 |
-
| 0.7882 | 160 | 0.
|
412 |
-
| 0.8374 | 170 | 0.
|
413 |
-
| 0.8867 | 180 | 0.
|
414 |
-
| 0.9360 | 190 | 0.
|
415 |
-
| 0.9852 | 200 | 0.
|
416 |
|
417 |
|
418 |
### Environmental Impact
|
419 |
Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
|
420 |
- **Carbon Emitted**: 0.018 kg of CO2
|
421 |
-
- **Hours Used**: 0.
|
422 |
|
423 |
### Training Hardware
|
424 |
- **On Cloud**: No
|
@@ -438,7 +561,8 @@ Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codec
|
|
438 |
## Citation
|
439 |
|
440 |
### BibTeX
|
441 |
-
|
|
|
442 |
```bibtex
|
443 |
@inproceedings{reimers-2019-sentence-bert,
|
444 |
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
|
|
9 |
- generated
|
10 |
base_model: microsoft/mpnet-base
|
11 |
metrics:
|
12 |
+
- pearson_cosine
|
13 |
+
- spearman_cosine
|
14 |
+
- pearson_manhattan
|
15 |
+
- spearman_manhattan
|
16 |
+
- pearson_euclidean
|
17 |
+
- spearman_euclidean
|
18 |
+
- pearson_dot
|
19 |
+
- spearman_dot
|
20 |
+
- pearson_max
|
21 |
+
- spearman_max
|
22 |
widget:
|
23 |
+
- source_sentence: 'Really? No kidding! '
|
24 |
sentences:
|
25 |
+
- yeah really no kidding
|
26 |
- At the end of the fourth century was when baked goods flourished.
|
27 |
+
- The campaigns seem to reach a new pool of contributors.
|
28 |
+
- source_sentence: A sleeping man.
|
|
|
29 |
sentences:
|
30 |
+
- Two men are sleeping.
|
31 |
+
- Someone is selling oranges
|
32 |
+
- the family is young
|
33 |
+
- source_sentence: a guy on a bike
|
34 |
sentences:
|
35 |
+
- A tall person on a bike
|
36 |
+
- A man is on a frozen lake.
|
37 |
+
- The women throw food at the kids
|
38 |
- source_sentence: yeah really no kidding
|
39 |
sentences:
|
40 |
+
- oh uh-huh well no they wouldn't would they no
|
41 |
- yeah i mean just when uh the they military paid for her education
|
42 |
+
- The campaigns seem to reach a new pool of contributors.
|
43 |
+
- source_sentence: He ran like an athlete.
|
|
|
44 |
sentences:
|
45 |
+
- ' Then he ran.'
|
46 |
- yeah i mean just when uh the they military paid for her education
|
47 |
+
- Similarly, OIM revised the electronic Grant Renewal Application to accommodate
|
48 |
+
new information sought by LSC and to ensure greater ease for users.
|
49 |
pipeline_tag: sentence-similarity
|
50 |
co2_eq_emissions:
|
51 |
+
emissions: 17.515467907816664
|
52 |
source: codecarbon
|
53 |
training_type: fine-tuning
|
54 |
on_cloud: false
|
55 |
cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
|
56 |
ram_total_size: 31.777088165283203
|
57 |
+
hours_used: 0.13
|
58 |
hardware_used: 1 x NVIDIA GeForce RTX 3090
|
59 |
+
model-index:
|
60 |
+
- name: SentenceTransformer based on microsoft/mpnet-base
|
61 |
+
results:
|
62 |
+
- task:
|
63 |
+
type: semantic-similarity
|
64 |
+
name: Semantic Similarity
|
65 |
+
dataset:
|
66 |
+
name: sts dev
|
67 |
+
type: sts-dev
|
68 |
+
metrics:
|
69 |
+
- type: pearson_cosine
|
70 |
+
value: 0.7331234146933103
|
71 |
+
name: Pearson Cosine
|
72 |
+
- type: spearman_cosine
|
73 |
+
value: 0.7435439430716654
|
74 |
+
name: Spearman Cosine
|
75 |
+
- type: pearson_manhattan
|
76 |
+
value: 0.7389474504545281
|
77 |
+
name: Pearson Manhattan
|
78 |
+
- type: spearman_manhattan
|
79 |
+
value: 0.7473580293303098
|
80 |
+
name: Spearman Manhattan
|
81 |
+
- type: pearson_euclidean
|
82 |
+
value: 0.7356264396007131
|
83 |
+
name: Pearson Euclidean
|
84 |
+
- type: spearman_euclidean
|
85 |
+
value: 0.7436137284782617
|
86 |
+
name: Spearman Euclidean
|
87 |
+
- type: pearson_dot
|
88 |
+
value: 0.7093073700072118
|
89 |
+
name: Pearson Dot
|
90 |
+
- type: spearman_dot
|
91 |
+
value: 0.7150453113301433
|
92 |
+
name: Spearman Dot
|
93 |
+
- type: pearson_max
|
94 |
+
value: 0.7389474504545281
|
95 |
+
name: Pearson Max
|
96 |
+
- type: spearman_max
|
97 |
+
value: 0.7473580293303098
|
98 |
+
name: Spearman Max
|
99 |
+
- task:
|
100 |
+
type: semantic-similarity
|
101 |
+
name: Semantic Similarity
|
102 |
+
dataset:
|
103 |
+
name: sts test
|
104 |
+
type: sts-test
|
105 |
+
metrics:
|
106 |
+
- type: pearson_cosine
|
107 |
+
value: 0.6750510843835755
|
108 |
+
name: Pearson Cosine
|
109 |
+
- type: spearman_cosine
|
110 |
+
value: 0.6615639695746663
|
111 |
+
name: Spearman Cosine
|
112 |
+
- type: pearson_manhattan
|
113 |
+
value: 0.6718085205234632
|
114 |
+
name: Pearson Manhattan
|
115 |
+
- type: spearman_manhattan
|
116 |
+
value: 0.6589482932175834
|
117 |
+
name: Spearman Manhattan
|
118 |
+
- type: pearson_euclidean
|
119 |
+
value: 0.6693170762111229
|
120 |
+
name: Pearson Euclidean
|
121 |
+
- type: spearman_euclidean
|
122 |
+
value: 0.6578210069410166
|
123 |
+
name: Spearman Euclidean
|
124 |
+
- type: pearson_dot
|
125 |
+
value: 0.6490291380804283
|
126 |
+
name: Pearson Dot
|
127 |
+
- type: spearman_dot
|
128 |
+
value: 0.6335192601696299
|
129 |
+
name: Spearman Dot
|
130 |
+
- type: pearson_max
|
131 |
+
value: 0.6750510843835755
|
132 |
+
name: Pearson Max
|
133 |
+
- type: spearman_max
|
134 |
+
value: 0.6615639695746663
|
135 |
+
name: Spearman Max
|
136 |
---
|
137 |
|
138 |
+
# SentenceTransformer based on microsoft/mpnet-base
|
139 |
|
140 |
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base) on the [multi_nli](https://huggingface.co/datasets/nyu-mll/multi_nli), [snli](https://huggingface.co/datasets/stanfordnlp/snli) and [stsb](https://huggingface.co/datasets/mteb/stsbenchmark-sts) datasets. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
141 |
|
|
|
183 |
from sentence_transformers import SentenceTransformer
|
184 |
|
185 |
# Download from the 🤗 Hub
|
186 |
+
model = SentenceTransformer("sentence_transformers_model_id")
|
187 |
# Run inference
|
188 |
sentences = [
|
189 |
+
"He ran like an athlete.",
|
190 |
+
" Then he ran.",
|
191 |
"yeah i mean just when uh the they military paid for her education",
|
192 |
]
|
193 |
embeddings = model.encode(sentences)
|
|
|
219 |
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
220 |
-->
|
221 |
|
222 |
+
## Evaluation
|
223 |
+
|
224 |
+
### Metrics
|
225 |
+
|
226 |
+
#### Semantic Similarity
|
227 |
+
* Dataset: `sts-dev`
|
228 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
229 |
+
|
230 |
+
| Metric | Value |
|
231 |
+
|:--------------------|:-----------|
|
232 |
+
| pearson_cosine | 0.7331 |
|
233 |
+
| **spearman_cosine** | **0.7435** |
|
234 |
+
| pearson_manhattan | 0.7389 |
|
235 |
+
| spearman_manhattan | 0.7474 |
|
236 |
+
| pearson_euclidean | 0.7356 |
|
237 |
+
| spearman_euclidean | 0.7436 |
|
238 |
+
| pearson_dot | 0.7093 |
|
239 |
+
| spearman_dot | 0.715 |
|
240 |
+
| pearson_max | 0.7389 |
|
241 |
+
| spearman_max | 0.7474 |
|
242 |
+
|
243 |
+
#### Semantic Similarity
|
244 |
+
* Dataset: `sts-test`
|
245 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
246 |
+
|
247 |
+
| Metric | Value |
|
248 |
+
|:--------------------|:-----------|
|
249 |
+
| pearson_cosine | 0.6751 |
|
250 |
+
| **spearman_cosine** | **0.6616** |
|
251 |
+
| pearson_manhattan | 0.6718 |
|
252 |
+
| spearman_manhattan | 0.6589 |
|
253 |
+
| pearson_euclidean | 0.6693 |
|
254 |
+
| spearman_euclidean | 0.6578 |
|
255 |
+
| pearson_dot | 0.649 |
|
256 |
+
| spearman_dot | 0.6335 |
|
257 |
+
| pearson_max | 0.6751 |
|
258 |
+
| spearman_max | 0.6616 |
|
259 |
+
|
260 |
<!--
|
261 |
## Bias, Risks and Limitations
|
262 |
|
|
|
514 |
</details>
|
515 |
|
516 |
### Training Logs
|
517 |
+
| Epoch | Step | Training Loss | multi nli loss | snli loss | stsb loss | sts-dev spearman cosine |
|
518 |
+
|:------:|:----:|:-------------:|:--------------:|:---------:|:---------:|:-----------------------:|
|
519 |
+
| 0.0493 | 10 | 0.9199 | 1.1019 | 1.1017 | 0.3016 | 0.6324 |
|
520 |
+
| 0.0985 | 20 | 1.0063 | 1.1000 | 1.0966 | 0.2635 | 0.6093 |
|
521 |
+
| 0.1478 | 30 | 1.002 | 1.0995 | 1.0908 | 0.1766 | 0.5328 |
|
522 |
+
| 0.1970 | 40 | 0.7946 | 1.0980 | 1.0913 | 0.0923 | 0.5991 |
|
523 |
+
| 0.2463 | 50 | 0.9891 | 1.0967 | 1.0781 | 0.0912 | 0.6457 |
|
524 |
+
| 0.2956 | 60 | 0.784 | 1.0938 | 1.0699 | 0.0934 | 0.6629 |
|
525 |
+
| 0.3448 | 70 | 0.6735 | 1.0940 | 1.0728 | 0.0640 | 0.7538 |
|
526 |
+
| 0.3941 | 80 | 0.7713 | 1.0893 | 1.0676 | 0.0612 | 0.7653 |
|
527 |
+
| 0.4433 | 90 | 0.9772 | 1.0870 | 1.0573 | 0.0636 | 0.7621 |
|
528 |
+
| 0.4926 | 100 | 0.8613 | 1.0862 | 1.0515 | 0.0632 | 0.7583 |
|
529 |
+
| 0.5419 | 110 | 0.7528 | 1.0814 | 1.0397 | 0.0617 | 0.7536 |
|
530 |
+
| 0.5911 | 120 | 0.6541 | 1.0854 | 1.0329 | 0.0657 | 0.7512 |
|
531 |
+
| 0.6404 | 130 | 1.051 | 1.0658 | 1.0211 | 0.0607 | 0.7340 |
|
532 |
+
| 0.6897 | 140 | 0.8516 | 1.0631 | 1.0171 | 0.0587 | 0.7467 |
|
533 |
+
| 0.7389 | 150 | 0.7484 | 1.0563 | 1.0122 | 0.0556 | 0.7537 |
|
534 |
+
| 0.7882 | 160 | 0.7368 | 1.0534 | 1.0100 | 0.0588 | 0.7526 |
|
535 |
+
| 0.8374 | 170 | 0.8373 | 1.0498 | 1.0030 | 0.0565 | 0.7491 |
|
536 |
+
| 0.8867 | 180 | 0.9311 | 1.0387 | 0.9981 | 0.0588 | 0.7302 |
|
537 |
+
| 0.9360 | 190 | 0.5445 | 1.0357 | 0.9967 | 0.0565 | 0.7382 |
|
538 |
+
| 0.9852 | 200 | 0.9154 | 1.0359 | 0.9964 | 0.0556 | 0.7435 |
|
539 |
|
540 |
|
541 |
### Environmental Impact
|
542 |
Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
|
543 |
- **Carbon Emitted**: 0.018 kg of CO2
|
544 |
+
- **Hours Used**: 0.13 hours
|
545 |
|
546 |
### Training Hardware
|
547 |
- **On Cloud**: No
|
|
|
561 |
## Citation
|
562 |
|
563 |
### BibTeX
|
564 |
+
|
565 |
+
#### Sentence Transformers and SoftmaxLoss
|
566 |
```bibtex
|
567 |
@inproceedings{reimers-2019-sentence-bert,
|
568 |
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|