|
--- |
|
language: |
|
- en |
|
library_name: sentence-transformers |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- loss:MatryoshkaLoss |
|
- loss:CoSENTLoss |
|
base_model: distilbert/distilbert-base-uncased |
|
metrics: |
|
- pearson_cosine |
|
- spearman_cosine |
|
- pearson_manhattan |
|
- spearman_manhattan |
|
- pearson_euclidean |
|
- spearman_euclidean |
|
- pearson_dot |
|
- spearman_dot |
|
- pearson_max |
|
- spearman_max |
|
widget: |
|
- source_sentence: The gate is yellow. |
|
sentences: |
|
- The gate is blue. |
|
- The person is starting a fire. |
|
- A woman is bungee jumping. |
|
- source_sentence: A plane in the sky. |
|
sentences: |
|
- Two airplanes in the sky. |
|
- A man is standing in the rain. |
|
- There are two men near a wall. |
|
- source_sentence: A woman is reading. |
|
sentences: |
|
- A woman is writing something. |
|
- A woman is applying eye shadow. |
|
- A dog and a red ball in the air. |
|
- source_sentence: A baby is laughing. |
|
sentences: |
|
- The baby laughed in his car seat. |
|
- Suicide bomber strikes in Syria |
|
- Bangladesh Islamist execution upheld |
|
- source_sentence: A woman is dancing. |
|
sentences: |
|
- A woman is dancing in railway station. |
|
- The flag was moving in the air. |
|
- three dogs growling On one another |
|
pipeline_tag: sentence-similarity |
|
co2_eq_emissions: |
|
emissions: 7.871164130493101 |
|
energy_consumed: 0.020249867843471606 |
|
source: codecarbon |
|
training_type: fine-tuning |
|
on_cloud: false |
|
cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K |
|
ram_total_size: 31.777088165283203 |
|
hours_used: 0.112 |
|
hardware_used: 1 x NVIDIA GeForce RTX 3090 |
|
model-index: |
|
- name: SentenceTransformer based on distilbert/distilbert-base-uncased |
|
results: |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts dev 768 |
|
type: sts-dev-768 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.8647737221000229 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.8747521728687471 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.8627734228763478 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.8657556253211545 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.862712112144467 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.8657615257280495 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.7442745641899206 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.7513830366520415 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.8647737221000229 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.8747521728687471 |
|
name: Spearman Max |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts dev 512 |
|
type: sts-dev-512 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.8628378541768764 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.8741345340758229 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.8619744745534216 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.8651450292937584 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.8622841683977804 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.8653280682431165 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.746359236761633 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.7540849763868891 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.8628378541768764 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.8741345340758229 |
|
name: Spearman Max |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts dev 256 |
|
type: sts-dev-256 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.8588975886507025 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.8714341050301952 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.8590790006287132 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.8634123185807864 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.8591861535833625 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.8628587088112977 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.7185871795192371 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.7288595287151053 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.8591861535833625 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.8714341050301952 |
|
name: Spearman Max |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts dev 128 |
|
type: sts-dev-128 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.8528583626543365 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.8687502864484896 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.8509433708242649 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.857615159782176 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.8531616082767298 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.8580823134153918 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.697019210549756 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.705924438927243 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.8531616082767298 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.8687502864484896 |
|
name: Spearman Max |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts dev 64 |
|
type: sts-dev-64 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.8340115410608493 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.858682843519445 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.8351566362279711 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.8445869885309296 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.838674217877368 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.8460894143343873 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.6579249229659768 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.6712615573330701 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.838674217877368 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.858682843519445 |
|
name: Spearman Max |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts test 768 |
|
type: sts-test-768 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.833720870548252 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.8469501140979906 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.8484755252691695 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.8470024066861298 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.8492651445573072 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.8475238481800537 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.6701649984837568 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.6526285131648061 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.8492651445573072 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.8475238481800537 |
|
name: Spearman Max |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts test 512 |
|
type: sts-test-512 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.8325595554355977 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.8467500241650668 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.8474378528408064 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.8462571021525837 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.848182316243596 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.8466275072216626 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.6736686039338646 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.6572299516736647 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.848182316243596 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.8467500241650668 |
|
name: Spearman Max |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts test 256 |
|
type: sts-test-256 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.8225923032714455 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.8403145699624681 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.8420998942805191 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.8419520394692916 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.8434867831513 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.8428522494561291 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.6230179114374444 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.6061595939729718 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.8434867831513 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.8428522494561291 |
|
name: Spearman Max |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts test 128 |
|
type: sts-test-128 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.8149976807930366 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.8349547446101432 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.8351661617446753 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.8360899024374612 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.8375785243041524 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.8375574347771609 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.5958381414366161 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.5793444545861678 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.8375785243041524 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.8375574347771609 |
|
name: Spearman Max |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts test 64 |
|
type: sts-test-64 |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.7981336004264228 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.8269913105115189 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.8238799955007295 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.8289121477853545 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.8278657744625194 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.8314643517951371 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.5206433480609991 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.5067194535547845 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.8278657744625194 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.8314643517951371 |
|
name: Spearman Max |
|
--- |
|
|
|
# SentenceTransformer based on distilbert/distilbert-base-uncased |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [distilbert/distilbert-base-uncased](https://huggingface.co./distilbert/distilbert-base-uncased) on the [sentence-transformers/stsb](https://huggingface.co./datasets/sentence-transformers/stsb) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [distilbert/distilbert-base-uncased](https://huggingface.co./distilbert/distilbert-base-uncased) <!-- at revision 6cdc0aad91f5ae2e6712e91bc7b65d1cf5c05411 --> |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Output Dimensionality:** 768 tokens |
|
- **Similarity Function:** Cosine Similarity |
|
- **Training Dataset:** |
|
- [sentence-transformers/stsb](https://huggingface.co./datasets/sentence-transformers/stsb) |
|
- **Language:** en |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co./models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("tomaarsen/distilbert-base-uncased-sts-matryoshka") |
|
# Run inference |
|
sentences = [ |
|
'A woman is dancing.', |
|
'A woman is dancing in railway station.', |
|
'The flag was moving in the air.', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 768] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-dev-768` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.8648 | |
|
| **spearman_cosine** | **0.8748** | |
|
| pearson_manhattan | 0.8628 | |
|
| spearman_manhattan | 0.8658 | |
|
| pearson_euclidean | 0.8627 | |
|
| spearman_euclidean | 0.8658 | |
|
| pearson_dot | 0.7443 | |
|
| spearman_dot | 0.7514 | |
|
| pearson_max | 0.8648 | |
|
| spearman_max | 0.8748 | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-dev-512` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.8628 | |
|
| **spearman_cosine** | **0.8741** | |
|
| pearson_manhattan | 0.862 | |
|
| spearman_manhattan | 0.8651 | |
|
| pearson_euclidean | 0.8623 | |
|
| spearman_euclidean | 0.8653 | |
|
| pearson_dot | 0.7464 | |
|
| spearman_dot | 0.7541 | |
|
| pearson_max | 0.8628 | |
|
| spearman_max | 0.8741 | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-dev-256` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.8589 | |
|
| **spearman_cosine** | **0.8714** | |
|
| pearson_manhattan | 0.8591 | |
|
| spearman_manhattan | 0.8634 | |
|
| pearson_euclidean | 0.8592 | |
|
| spearman_euclidean | 0.8629 | |
|
| pearson_dot | 0.7186 | |
|
| spearman_dot | 0.7289 | |
|
| pearson_max | 0.8592 | |
|
| spearman_max | 0.8714 | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-dev-128` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.8529 | |
|
| **spearman_cosine** | **0.8688** | |
|
| pearson_manhattan | 0.8509 | |
|
| spearman_manhattan | 0.8576 | |
|
| pearson_euclidean | 0.8532 | |
|
| spearman_euclidean | 0.8581 | |
|
| pearson_dot | 0.697 | |
|
| spearman_dot | 0.7059 | |
|
| pearson_max | 0.8532 | |
|
| spearman_max | 0.8688 | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-dev-64` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.834 | |
|
| **spearman_cosine** | **0.8587** | |
|
| pearson_manhattan | 0.8352 | |
|
| spearman_manhattan | 0.8446 | |
|
| pearson_euclidean | 0.8387 | |
|
| spearman_euclidean | 0.8461 | |
|
| pearson_dot | 0.6579 | |
|
| spearman_dot | 0.6713 | |
|
| pearson_max | 0.8387 | |
|
| spearman_max | 0.8587 | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-test-768` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:----------| |
|
| pearson_cosine | 0.8337 | |
|
| **spearman_cosine** | **0.847** | |
|
| pearson_manhattan | 0.8485 | |
|
| spearman_manhattan | 0.847 | |
|
| pearson_euclidean | 0.8493 | |
|
| spearman_euclidean | 0.8475 | |
|
| pearson_dot | 0.6702 | |
|
| spearman_dot | 0.6526 | |
|
| pearson_max | 0.8493 | |
|
| spearman_max | 0.8475 | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-test-512` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.8326 | |
|
| **spearman_cosine** | **0.8468** | |
|
| pearson_manhattan | 0.8474 | |
|
| spearman_manhattan | 0.8463 | |
|
| pearson_euclidean | 0.8482 | |
|
| spearman_euclidean | 0.8466 | |
|
| pearson_dot | 0.6737 | |
|
| spearman_dot | 0.6572 | |
|
| pearson_max | 0.8482 | |
|
| spearman_max | 0.8468 | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-test-256` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.8226 | |
|
| **spearman_cosine** | **0.8403** | |
|
| pearson_manhattan | 0.8421 | |
|
| spearman_manhattan | 0.842 | |
|
| pearson_euclidean | 0.8435 | |
|
| spearman_euclidean | 0.8429 | |
|
| pearson_dot | 0.623 | |
|
| spearman_dot | 0.6062 | |
|
| pearson_max | 0.8435 | |
|
| spearman_max | 0.8429 | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-test-128` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:----------| |
|
| pearson_cosine | 0.815 | |
|
| **spearman_cosine** | **0.835** | |
|
| pearson_manhattan | 0.8352 | |
|
| spearman_manhattan | 0.8361 | |
|
| pearson_euclidean | 0.8376 | |
|
| spearman_euclidean | 0.8376 | |
|
| pearson_dot | 0.5958 | |
|
| spearman_dot | 0.5793 | |
|
| pearson_max | 0.8376 | |
|
| spearman_max | 0.8376 | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `sts-test-64` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:----------| |
|
| pearson_cosine | 0.7981 | |
|
| **spearman_cosine** | **0.827** | |
|
| pearson_manhattan | 0.8239 | |
|
| spearman_manhattan | 0.8289 | |
|
| pearson_euclidean | 0.8279 | |
|
| spearman_euclidean | 0.8315 | |
|
| pearson_dot | 0.5206 | |
|
| spearman_dot | 0.5067 | |
|
| pearson_max | 0.8279 | |
|
| spearman_max | 0.8315 | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### sentence-transformers/stsb |
|
|
|
* Dataset: [sentence-transformers/stsb](https://huggingface.co./datasets/sentence-transformers/stsb) at [ab7a5ac](https://huggingface.co./datasets/sentence-transformers/stsb/tree/ab7a5ac0e35aa22088bdcf23e7fd99b220e53308) |
|
* Size: 5,749 training samples |
|
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | sentence1 | sentence2 | score | |
|
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------| |
|
| type | string | string | float | |
|
| details | <ul><li>min: 6 tokens</li><li>mean: 10.0 tokens</li><li>max: 28 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 9.95 tokens</li><li>max: 25 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.54</li><li>max: 1.0</li></ul> | |
|
* Samples: |
|
| sentence1 | sentence2 | score | |
|
|:-----------------------------------------------------------|:----------------------------------------------------------------------|:------------------| |
|
| <code>A plane is taking off.</code> | <code>An air plane is taking off.</code> | <code>1.0</code> | |
|
| <code>A man is playing a large flute.</code> | <code>A man is playing a flute.</code> | <code>0.76</code> | |
|
| <code>A man is spreading shreded cheese on a pizza.</code> | <code>A man is spreading shredded cheese on an uncooked pizza.</code> | <code>0.76</code> | |
|
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/losses.html#matryoshkaloss) with these parameters: |
|
```json |
|
{ |
|
"loss": "CoSENTLoss", |
|
"matryoshka_dims": [ |
|
768, |
|
512, |
|
256, |
|
128, |
|
64 |
|
], |
|
"matryoshka_weights": [ |
|
1, |
|
1, |
|
1, |
|
1, |
|
1 |
|
], |
|
"n_dims_per_step": -1 |
|
} |
|
``` |
|
|
|
### Evaluation Dataset |
|
|
|
#### sentence-transformers/stsb |
|
|
|
* Dataset: [sentence-transformers/stsb](https://huggingface.co./datasets/sentence-transformers/stsb) at [ab7a5ac](https://huggingface.co./datasets/sentence-transformers/stsb/tree/ab7a5ac0e35aa22088bdcf23e7fd99b220e53308) |
|
* Size: 1,500 evaluation samples |
|
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | sentence1 | sentence2 | score | |
|
|:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------| |
|
| type | string | string | float | |
|
| details | <ul><li>min: 5 tokens</li><li>mean: 15.1 tokens</li><li>max: 45 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 15.11 tokens</li><li>max: 53 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.47</li><li>max: 1.0</li></ul> | |
|
* Samples: |
|
| sentence1 | sentence2 | score | |
|
|:--------------------------------------------------|:------------------------------------------------------|:------------------| |
|
| <code>A man with a hard hat is dancing.</code> | <code>A man wearing a hard hat is dancing.</code> | <code>1.0</code> | |
|
| <code>A young child is riding a horse.</code> | <code>A child is riding a horse.</code> | <code>0.95</code> | |
|
| <code>A man is feeding a mouse to a snake.</code> | <code>The man is feeding a mouse to the snake.</code> | <code>1.0</code> | |
|
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/losses.html#matryoshkaloss) with these parameters: |
|
```json |
|
{ |
|
"loss": "CoSENTLoss", |
|
"matryoshka_dims": [ |
|
768, |
|
512, |
|
256, |
|
128, |
|
64 |
|
], |
|
"matryoshka_weights": [ |
|
1, |
|
1, |
|
1, |
|
1, |
|
1 |
|
], |
|
"n_dims_per_step": -1 |
|
} |
|
``` |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `eval_strategy`: steps |
|
- `per_device_train_batch_size`: 16 |
|
- `per_device_eval_batch_size`: 16 |
|
- `num_train_epochs`: 4 |
|
- `warmup_ratio`: 0.1 |
|
- `fp16`: True |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: steps |
|
- `prediction_loss_only`: False |
|
- `per_device_train_batch_size`: 16 |
|
- `per_device_eval_batch_size`: 16 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `learning_rate`: 5e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1.0 |
|
- `num_train_epochs`: 4 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: linear |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.1 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: True |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: False |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: None |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: False |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_sampler`: batch_sampler |
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | Training Loss | loss | sts-dev-128_spearman_cosine | sts-dev-256_spearman_cosine | sts-dev-512_spearman_cosine | sts-dev-64_spearman_cosine | sts-dev-768_spearman_cosine | sts-test-128_spearman_cosine | sts-test-256_spearman_cosine | sts-test-512_spearman_cosine | sts-test-64_spearman_cosine | sts-test-768_spearman_cosine | |
|
|:------:|:----:|:-------------:|:-------:|:---------------------------:|:---------------------------:|:---------------------------:|:--------------------------:|:---------------------------:|:----------------------------:|:----------------------------:|:----------------------------:|:---------------------------:|:----------------------------:| |
|
| 0.2778 | 100 | 23.266 | 21.5517 | 0.8305 | 0.8355 | 0.8361 | 0.8157 | 0.8366 | - | - | - | - | - | |
|
| 0.5556 | 200 | 21.8736 | 21.6172 | 0.8327 | 0.8388 | 0.8446 | 0.8206 | 0.8453 | - | - | - | - | - | |
|
| 0.8333 | 300 | 21.6241 | 22.0565 | 0.8475 | 0.8538 | 0.8556 | 0.8345 | 0.8565 | - | - | - | - | - | |
|
| 1.1111 | 400 | 21.075 | 23.6719 | 0.8545 | 0.8581 | 0.8634 | 0.8435 | 0.8644 | - | - | - | - | - | |
|
| 1.3889 | 500 | 20.4122 | 22.5926 | 0.8592 | 0.8624 | 0.8650 | 0.8436 | 0.8656 | - | - | - | - | - | |
|
| 1.6667 | 600 | 20.6586 | 22.5999 | 0.8514 | 0.8563 | 0.8595 | 0.8389 | 0.8597 | - | - | - | - | - | |
|
| 1.9444 | 700 | 20.3262 | 22.2965 | 0.8582 | 0.8631 | 0.8666 | 0.8465 | 0.8667 | - | - | - | - | - | |
|
| 2.2222 | 800 | 19.7948 | 23.1844 | 0.8621 | 0.8659 | 0.8688 | 0.8499 | 0.8694 | - | - | - | - | - | |
|
| 2.5 | 900 | 19.2826 | 23.1351 | 0.8653 | 0.8687 | 0.8703 | 0.8547 | 0.8710 | - | - | - | - | - | |
|
| 2.7778 | 1000 | 19.1063 | 23.7141 | 0.8641 | 0.8672 | 0.8691 | 0.8531 | 0.8695 | - | - | - | - | - | |
|
| 3.0556 | 1100 | 19.4575 | 23.0055 | 0.8673 | 0.8702 | 0.8726 | 0.8574 | 0.8728 | - | - | - | - | - | |
|
| 3.3333 | 1200 | 18.0727 | 24.9288 | 0.8659 | 0.8692 | 0.8715 | 0.8565 | 0.8722 | - | - | - | - | - | |
|
| 3.6111 | 1300 | 18.1698 | 25.3114 | 0.8675 | 0.8701 | 0.8728 | 0.8576 | 0.8734 | - | - | - | - | - | |
|
| 3.8889 | 1400 | 18.2321 | 25.3777 | 0.8688 | 0.8714 | 0.8741 | 0.8587 | 0.8748 | - | - | - | - | - | |
|
| 4.0 | 1440 | - | - | - | - | - | - | - | 0.8350 | 0.8403 | 0.8468 | 0.8270 | 0.8470 | |
|
|
|
|
|
### Environmental Impact |
|
Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon). |
|
- **Energy Consumed**: 0.020 kWh |
|
- **Carbon Emitted**: 0.008 kg of CO2 |
|
- **Hours Used**: 0.112 hours |
|
|
|
### Training Hardware |
|
- **On Cloud**: No |
|
- **GPU Model**: 1 x NVIDIA GeForce RTX 3090 |
|
- **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K |
|
- **RAM Size**: 31.78 GB |
|
|
|
### Framework Versions |
|
- Python: 3.11.6 |
|
- Sentence Transformers: 3.0.0.dev0 |
|
- Transformers: 4.41.0.dev0 |
|
- PyTorch: 2.3.0+cu121 |
|
- Accelerate: 0.26.1 |
|
- Datasets: 2.18.0 |
|
- Tokenizers: 0.19.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
#### MatryoshkaLoss |
|
```bibtex |
|
@misc{kusupati2024matryoshka, |
|
title={Matryoshka Representation Learning}, |
|
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, |
|
year={2024}, |
|
eprint={2205.13147}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.LG} |
|
} |
|
``` |
|
|
|
#### CoSENTLoss |
|
```bibtex |
|
@online{kexuefm-8847, |
|
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT}, |
|
author={Su Jianlin}, |
|
year={2022}, |
|
month={Jan}, |
|
url={https://kexue.fm/archives/8847}, |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |