File size: 38,630 Bytes
885e030
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
461ec72
885e030
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
---
language:
- en
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- loss:MatryoshkaLoss
- loss:CoSENTLoss
base_model: distilbert/distilbert-base-uncased
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
widget:
- source_sentence: The gate is yellow.
  sentences:
  - The gate is blue.
  - The person is starting a fire.
  - A woman is bungee jumping.
- source_sentence: A plane in the sky.
  sentences:
  - Two airplanes in the sky.
  - A man is standing in the rain.
  - There are two men near a wall.
- source_sentence: A woman is reading.
  sentences:
  - A woman is writing something.
  - A woman is applying eye shadow.
  - A dog and a red ball in the air.
- source_sentence: A baby is laughing.
  sentences:
  - The baby laughed in his car seat.
  - Suicide bomber strikes in Syria
  - Bangladesh Islamist execution upheld
- source_sentence: A woman is dancing.
  sentences:
  - A woman is dancing in railway station.
  - The flag was moving in the air.
  - three dogs growling On one another
pipeline_tag: sentence-similarity
co2_eq_emissions:
  emissions: 7.871164130493101
  energy_consumed: 0.020249867843471606
  source: codecarbon
  training_type: fine-tuning
  on_cloud: false
  cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
  ram_total_size: 31.777088165283203
  hours_used: 0.112
  hardware_used: 1 x NVIDIA GeForce RTX 3090
model-index:
- name: SentenceTransformer based on distilbert/distilbert-base-uncased
  results:
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts dev 768
      type: sts-dev-768
    metrics:
    - type: pearson_cosine
      value: 0.8647737221000229
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.8747521728687471
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.8627734228763478
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.8657556253211545
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.862712112144467
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.8657615257280495
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.7442745641899206
      name: Pearson Dot
    - type: spearman_dot
      value: 0.7513830366520415
      name: Spearman Dot
    - type: pearson_max
      value: 0.8647737221000229
      name: Pearson Max
    - type: spearman_max
      value: 0.8747521728687471
      name: Spearman Max
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts dev 512
      type: sts-dev-512
    metrics:
    - type: pearson_cosine
      value: 0.8628378541768764
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.8741345340758229
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.8619744745534216
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.8651450292937584
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.8622841683977804
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.8653280682431165
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.746359236761633
      name: Pearson Dot
    - type: spearman_dot
      value: 0.7540849763868891
      name: Spearman Dot
    - type: pearson_max
      value: 0.8628378541768764
      name: Pearson Max
    - type: spearman_max
      value: 0.8741345340758229
      name: Spearman Max
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts dev 256
      type: sts-dev-256
    metrics:
    - type: pearson_cosine
      value: 0.8588975886507025
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.8714341050301952
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.8590790006287132
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.8634123185807864
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.8591861535833625
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.8628587088112977
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.7185871795192371
      name: Pearson Dot
    - type: spearman_dot
      value: 0.7288595287151053
      name: Spearman Dot
    - type: pearson_max
      value: 0.8591861535833625
      name: Pearson Max
    - type: spearman_max
      value: 0.8714341050301952
      name: Spearman Max
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts dev 128
      type: sts-dev-128
    metrics:
    - type: pearson_cosine
      value: 0.8528583626543365
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.8687502864484896
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.8509433708242649
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.857615159782176
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.8531616082767298
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.8580823134153918
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.697019210549756
      name: Pearson Dot
    - type: spearman_dot
      value: 0.705924438927243
      name: Spearman Dot
    - type: pearson_max
      value: 0.8531616082767298
      name: Pearson Max
    - type: spearman_max
      value: 0.8687502864484896
      name: Spearman Max
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts dev 64
      type: sts-dev-64
    metrics:
    - type: pearson_cosine
      value: 0.8340115410608493
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.858682843519445
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.8351566362279711
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.8445869885309296
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.838674217877368
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.8460894143343873
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.6579249229659768
      name: Pearson Dot
    - type: spearman_dot
      value: 0.6712615573330701
      name: Spearman Dot
    - type: pearson_max
      value: 0.838674217877368
      name: Pearson Max
    - type: spearman_max
      value: 0.858682843519445
      name: Spearman Max
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts test 768
      type: sts-test-768
    metrics:
    - type: pearson_cosine
      value: 0.833720870548252
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.8469501140979906
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.8484755252691695
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.8470024066861298
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.8492651445573072
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.8475238481800537
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.6701649984837568
      name: Pearson Dot
    - type: spearman_dot
      value: 0.6526285131648061
      name: Spearman Dot
    - type: pearson_max
      value: 0.8492651445573072
      name: Pearson Max
    - type: spearman_max
      value: 0.8475238481800537
      name: Spearman Max
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts test 512
      type: sts-test-512
    metrics:
    - type: pearson_cosine
      value: 0.8325595554355977
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.8467500241650668
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.8474378528408064
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.8462571021525837
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.848182316243596
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.8466275072216626
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.6736686039338646
      name: Pearson Dot
    - type: spearman_dot
      value: 0.6572299516736647
      name: Spearman Dot
    - type: pearson_max
      value: 0.848182316243596
      name: Pearson Max
    - type: spearman_max
      value: 0.8467500241650668
      name: Spearman Max
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts test 256
      type: sts-test-256
    metrics:
    - type: pearson_cosine
      value: 0.8225923032714455
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.8403145699624681
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.8420998942805191
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.8419520394692916
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.8434867831513
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.8428522494561291
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.6230179114374444
      name: Pearson Dot
    - type: spearman_dot
      value: 0.6061595939729718
      name: Spearman Dot
    - type: pearson_max
      value: 0.8434867831513
      name: Pearson Max
    - type: spearman_max
      value: 0.8428522494561291
      name: Spearman Max
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts test 128
      type: sts-test-128
    metrics:
    - type: pearson_cosine
      value: 0.8149976807930366
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.8349547446101432
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.8351661617446753
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.8360899024374612
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.8375785243041524
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.8375574347771609
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.5958381414366161
      name: Pearson Dot
    - type: spearman_dot
      value: 0.5793444545861678
      name: Spearman Dot
    - type: pearson_max
      value: 0.8375785243041524
      name: Pearson Max
    - type: spearman_max
      value: 0.8375574347771609
      name: Spearman Max
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts test 64
      type: sts-test-64
    metrics:
    - type: pearson_cosine
      value: 0.7981336004264228
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.8269913105115189
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.8238799955007295
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.8289121477853545
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.8278657744625194
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.8314643517951371
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.5206433480609991
      name: Pearson Dot
    - type: spearman_dot
      value: 0.5067194535547845
      name: Spearman Dot
    - type: pearson_max
      value: 0.8278657744625194
      name: Pearson Max
    - type: spearman_max
      value: 0.8314643517951371
      name: Spearman Max
---

# SentenceTransformer based on distilbert/distilbert-base-uncased

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [distilbert/distilbert-base-uncased](https://huggingface.co./distilbert/distilbert-base-uncased) on the [sentence-transformers/stsb](https://huggingface.co./datasets/sentence-transformers/stsb) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [distilbert/distilbert-base-uncased](https://huggingface.co./distilbert/distilbert-base-uncased) <!-- at revision 6cdc0aad91f5ae2e6712e91bc7b65d1cf5c05411 -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
    - [sentence-transformers/stsb](https://huggingface.co./datasets/sentence-transformers/stsb)
- **Language:** en
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co./models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("tomaarsen/distilbert-base-uncased-sts-matryoshka")
# Run inference
sentences = [
    'A woman is dancing.',
    'A woman is dancing in railway station.',
    'The flag was moving in the air.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Semantic Similarity
* Dataset: `sts-dev-768`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.8648     |
| **spearman_cosine** | **0.8748** |
| pearson_manhattan   | 0.8628     |
| spearman_manhattan  | 0.8658     |
| pearson_euclidean   | 0.8627     |
| spearman_euclidean  | 0.8658     |
| pearson_dot         | 0.7443     |
| spearman_dot        | 0.7514     |
| pearson_max         | 0.8648     |
| spearman_max        | 0.8748     |

#### Semantic Similarity
* Dataset: `sts-dev-512`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.8628     |
| **spearman_cosine** | **0.8741** |
| pearson_manhattan   | 0.862      |
| spearman_manhattan  | 0.8651     |
| pearson_euclidean   | 0.8623     |
| spearman_euclidean  | 0.8653     |
| pearson_dot         | 0.7464     |
| spearman_dot        | 0.7541     |
| pearson_max         | 0.8628     |
| spearman_max        | 0.8741     |

#### Semantic Similarity
* Dataset: `sts-dev-256`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.8589     |
| **spearman_cosine** | **0.8714** |
| pearson_manhattan   | 0.8591     |
| spearman_manhattan  | 0.8634     |
| pearson_euclidean   | 0.8592     |
| spearman_euclidean  | 0.8629     |
| pearson_dot         | 0.7186     |
| spearman_dot        | 0.7289     |
| pearson_max         | 0.8592     |
| spearman_max        | 0.8714     |

#### Semantic Similarity
* Dataset: `sts-dev-128`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.8529     |
| **spearman_cosine** | **0.8688** |
| pearson_manhattan   | 0.8509     |
| spearman_manhattan  | 0.8576     |
| pearson_euclidean   | 0.8532     |
| spearman_euclidean  | 0.8581     |
| pearson_dot         | 0.697      |
| spearman_dot        | 0.7059     |
| pearson_max         | 0.8532     |
| spearman_max        | 0.8688     |

#### Semantic Similarity
* Dataset: `sts-dev-64`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.834      |
| **spearman_cosine** | **0.8587** |
| pearson_manhattan   | 0.8352     |
| spearman_manhattan  | 0.8446     |
| pearson_euclidean   | 0.8387     |
| spearman_euclidean  | 0.8461     |
| pearson_dot         | 0.6579     |
| spearman_dot        | 0.6713     |
| pearson_max         | 0.8387     |
| spearman_max        | 0.8587     |

#### Semantic Similarity
* Dataset: `sts-test-768`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value     |
|:--------------------|:----------|
| pearson_cosine      | 0.8337    |
| **spearman_cosine** | **0.847** |
| pearson_manhattan   | 0.8485    |
| spearman_manhattan  | 0.847     |
| pearson_euclidean   | 0.8493    |
| spearman_euclidean  | 0.8475    |
| pearson_dot         | 0.6702    |
| spearman_dot        | 0.6526    |
| pearson_max         | 0.8493    |
| spearman_max        | 0.8475    |

#### Semantic Similarity
* Dataset: `sts-test-512`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.8326     |
| **spearman_cosine** | **0.8468** |
| pearson_manhattan   | 0.8474     |
| spearman_manhattan  | 0.8463     |
| pearson_euclidean   | 0.8482     |
| spearman_euclidean  | 0.8466     |
| pearson_dot         | 0.6737     |
| spearman_dot        | 0.6572     |
| pearson_max         | 0.8482     |
| spearman_max        | 0.8468     |

#### Semantic Similarity
* Dataset: `sts-test-256`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.8226     |
| **spearman_cosine** | **0.8403** |
| pearson_manhattan   | 0.8421     |
| spearman_manhattan  | 0.842      |
| pearson_euclidean   | 0.8435     |
| spearman_euclidean  | 0.8429     |
| pearson_dot         | 0.623      |
| spearman_dot        | 0.6062     |
| pearson_max         | 0.8435     |
| spearman_max        | 0.8429     |

#### Semantic Similarity
* Dataset: `sts-test-128`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value     |
|:--------------------|:----------|
| pearson_cosine      | 0.815     |
| **spearman_cosine** | **0.835** |
| pearson_manhattan   | 0.8352    |
| spearman_manhattan  | 0.8361    |
| pearson_euclidean   | 0.8376    |
| spearman_euclidean  | 0.8376    |
| pearson_dot         | 0.5958    |
| spearman_dot        | 0.5793    |
| pearson_max         | 0.8376    |
| spearman_max        | 0.8376    |

#### Semantic Similarity
* Dataset: `sts-test-64`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value     |
|:--------------------|:----------|
| pearson_cosine      | 0.7981    |
| **spearman_cosine** | **0.827** |
| pearson_manhattan   | 0.8239    |
| spearman_manhattan  | 0.8289    |
| pearson_euclidean   | 0.8279    |
| spearman_euclidean  | 0.8315    |
| pearson_dot         | 0.5206    |
| spearman_dot        | 0.5067    |
| pearson_max         | 0.8279    |
| spearman_max        | 0.8315    |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### sentence-transformers/stsb

* Dataset: [sentence-transformers/stsb](https://huggingface.co./datasets/sentence-transformers/stsb) at [ab7a5ac](https://huggingface.co./datasets/sentence-transformers/stsb/tree/ab7a5ac0e35aa22088bdcf23e7fd99b220e53308)
* Size: 5,749 training samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                        | sentence2                                                                        | score                                                          |
  |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------|
  | type    | string                                                                           | string                                                                           | float                                                          |
  | details | <ul><li>min: 6 tokens</li><li>mean: 10.0 tokens</li><li>max: 28 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 9.95 tokens</li><li>max: 25 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.54</li><li>max: 1.0</li></ul> |
* Samples:
  | sentence1                                                  | sentence2                                                             | score             |
  |:-----------------------------------------------------------|:----------------------------------------------------------------------|:------------------|
  | <code>A plane is taking off.</code>                        | <code>An air plane is taking off.</code>                              | <code>1.0</code>  |
  | <code>A man is playing a large flute.</code>               | <code>A man is playing a flute.</code>                                | <code>0.76</code> |
  | <code>A man is spreading shreded cheese on a pizza.</code> | <code>A man is spreading shredded cheese on an uncooked pizza.</code> | <code>0.76</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "CoSENTLoss",
      "matryoshka_dims": [
          768,
          512,
          256,
          128,
          64
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Evaluation Dataset

#### sentence-transformers/stsb

* Dataset: [sentence-transformers/stsb](https://huggingface.co./datasets/sentence-transformers/stsb) at [ab7a5ac](https://huggingface.co./datasets/sentence-transformers/stsb/tree/ab7a5ac0e35aa22088bdcf23e7fd99b220e53308)
* Size: 1,500 evaluation samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                        | sentence2                                                                         | score                                                          |
  |:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
  | type    | string                                                                           | string                                                                            | float                                                          |
  | details | <ul><li>min: 5 tokens</li><li>mean: 15.1 tokens</li><li>max: 45 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 15.11 tokens</li><li>max: 53 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.47</li><li>max: 1.0</li></ul> |
* Samples:
  | sentence1                                         | sentence2                                             | score             |
  |:--------------------------------------------------|:------------------------------------------------------|:------------------|
  | <code>A man with a hard hat is dancing.</code>    | <code>A man wearing a hard hat is dancing.</code>     | <code>1.0</code>  |
  | <code>A young child is riding a horse.</code>     | <code>A child is riding a horse.</code>               | <code>0.95</code> |
  | <code>A man is feeding a mouse to a snake.</code> | <code>The man is feeding a mouse to the snake.</code> | <code>1.0</code>  |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "CoSENTLoss",
      "matryoshka_dims": [
          768,
          512,
          256,
          128,
          64
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `num_train_epochs`: 4
- `warmup_ratio`: 0.1
- `fp16`: True

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: False
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 4
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: None
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch  | Step | Training Loss | loss    | sts-dev-128_spearman_cosine | sts-dev-256_spearman_cosine | sts-dev-512_spearman_cosine | sts-dev-64_spearman_cosine | sts-dev-768_spearman_cosine | sts-test-128_spearman_cosine | sts-test-256_spearman_cosine | sts-test-512_spearman_cosine | sts-test-64_spearman_cosine | sts-test-768_spearman_cosine |
|:------:|:----:|:-------------:|:-------:|:---------------------------:|:---------------------------:|:---------------------------:|:--------------------------:|:---------------------------:|:----------------------------:|:----------------------------:|:----------------------------:|:---------------------------:|:----------------------------:|
| 0.2778 | 100  | 23.266        | 21.5517 | 0.8305                      | 0.8355                      | 0.8361                      | 0.8157                     | 0.8366                      | -                            | -                            | -                            | -                           | -                            |
| 0.5556 | 200  | 21.8736       | 21.6172 | 0.8327                      | 0.8388                      | 0.8446                      | 0.8206                     | 0.8453                      | -                            | -                            | -                            | -                           | -                            |
| 0.8333 | 300  | 21.6241       | 22.0565 | 0.8475                      | 0.8538                      | 0.8556                      | 0.8345                     | 0.8565                      | -                            | -                            | -                            | -                           | -                            |
| 1.1111 | 400  | 21.075        | 23.6719 | 0.8545                      | 0.8581                      | 0.8634                      | 0.8435                     | 0.8644                      | -                            | -                            | -                            | -                           | -                            |
| 1.3889 | 500  | 20.4122       | 22.5926 | 0.8592                      | 0.8624                      | 0.8650                      | 0.8436                     | 0.8656                      | -                            | -                            | -                            | -                           | -                            |
| 1.6667 | 600  | 20.6586       | 22.5999 | 0.8514                      | 0.8563                      | 0.8595                      | 0.8389                     | 0.8597                      | -                            | -                            | -                            | -                           | -                            |
| 1.9444 | 700  | 20.3262       | 22.2965 | 0.8582                      | 0.8631                      | 0.8666                      | 0.8465                     | 0.8667                      | -                            | -                            | -                            | -                           | -                            |
| 2.2222 | 800  | 19.7948       | 23.1844 | 0.8621                      | 0.8659                      | 0.8688                      | 0.8499                     | 0.8694                      | -                            | -                            | -                            | -                           | -                            |
| 2.5    | 900  | 19.2826       | 23.1351 | 0.8653                      | 0.8687                      | 0.8703                      | 0.8547                     | 0.8710                      | -                            | -                            | -                            | -                           | -                            |
| 2.7778 | 1000 | 19.1063       | 23.7141 | 0.8641                      | 0.8672                      | 0.8691                      | 0.8531                     | 0.8695                      | -                            | -                            | -                            | -                           | -                            |
| 3.0556 | 1100 | 19.4575       | 23.0055 | 0.8673                      | 0.8702                      | 0.8726                      | 0.8574                     | 0.8728                      | -                            | -                            | -                            | -                           | -                            |
| 3.3333 | 1200 | 18.0727       | 24.9288 | 0.8659                      | 0.8692                      | 0.8715                      | 0.8565                     | 0.8722                      | -                            | -                            | -                            | -                           | -                            |
| 3.6111 | 1300 | 18.1698       | 25.3114 | 0.8675                      | 0.8701                      | 0.8728                      | 0.8576                     | 0.8734                      | -                            | -                            | -                            | -                           | -                            |
| 3.8889 | 1400 | 18.2321       | 25.3777 | 0.8688                      | 0.8714                      | 0.8741                      | 0.8587                     | 0.8748                      | -                            | -                            | -                            | -                           | -                            |
| 4.0    | 1440 | -             | -       | -                           | -                           | -                           | -                          | -                           | 0.8350                       | 0.8403                       | 0.8468                       | 0.8270                      | 0.8470                       |


### Environmental Impact
Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
- **Energy Consumed**: 0.020 kWh
- **Carbon Emitted**: 0.008 kg of CO2
- **Hours Used**: 0.112 hours

### Training Hardware
- **On Cloud**: No
- **GPU Model**: 1 x NVIDIA GeForce RTX 3090
- **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K
- **RAM Size**: 31.78 GB

### Framework Versions
- Python: 3.11.6
- Sentence Transformers: 3.0.0.dev0
- Transformers: 4.41.0.dev0
- PyTorch: 2.3.0+cu121
- Accelerate: 0.26.1
- Datasets: 2.18.0
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning}, 
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

#### CoSENTLoss
```bibtex
@online{kexuefm-8847,
    title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
    author={Su Jianlin},
    year={2022},
    month={Jan},
    url={https://kexue.fm/archives/8847},
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->