|
---
|
|
tags:
|
|
- sentence-transformers
|
|
- sentence-similarity
|
|
- feature-extraction
|
|
- generated_from_trainer
|
|
- dataset_size:160436
|
|
- loss:DenoisingAutoEncoderLoss
|
|
base_model: google-bert/bert-base-uncased
|
|
widget:
|
|
- source_sentence: how do i make evolution check and notify new emails , without keeping
|
|
main ui open ?
|
|
sentences:
|
|
- ppas be removed?
|
|
- how set serve as a samba primary controller pam modules to authenticate against?
|
|
- how do make check and notify new emails keeping
|
|
- source_sentence: setting http proxy in awesome wm
|
|
sentences:
|
|
- on 10.04 on p series?
|
|
- setting http proxy awesome wm
|
|
- mean package is "set to installed?
|
|
- source_sentence: what is ubuntu advantage ?
|
|
sentences:
|
|
- is advantage?
|
|
- how turn calling on f1
|
|
- is utnubu?
|
|
- source_sentence: is there a way to check hardware integrity ?
|
|
sentences:
|
|
- is there a way to hardware integrity?
|
|
- to change key ctrl
|
|
- software is to tv card
|
|
- source_sentence: how to fix ssl error from python apps ( urllib ) when behind https
|
|
proxy ?
|
|
sentences:
|
|
- windows started with archive
|
|
- upstart
|
|
- how to ssl from python () proxy
|
|
pipeline_tag: sentence-similarity
|
|
library_name: sentence-transformers
|
|
metrics:
|
|
- map
|
|
- mrr@10
|
|
- ndcg@10
|
|
co2_eq_emissions:
|
|
emissions: 74.02946721860093
|
|
energy_consumed: 0.19045301341027557
|
|
source: codecarbon
|
|
training_type: fine-tuning
|
|
on_cloud: false
|
|
cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
|
|
ram_total_size: 31.777088165283203
|
|
hours_used: 0.64
|
|
hardware_used: 1 x NVIDIA GeForce RTX 3090
|
|
model-index:
|
|
- name: SentenceTransformer based on google-bert/bert-base-uncased
|
|
results:
|
|
- task:
|
|
type: reranking
|
|
name: Reranking
|
|
dataset:
|
|
name: AskUbuntu dev
|
|
type: AskUbuntu-dev
|
|
metrics:
|
|
- type: map
|
|
value: 0.5058158414596666
|
|
name: Map
|
|
- type: mrr@10
|
|
value: 0.6325571254142682
|
|
name: Mrr@10
|
|
- type: ndcg@10
|
|
value: 0.5529143206799554
|
|
name: Ndcg@10
|
|
- task:
|
|
type: reranking
|
|
name: Reranking
|
|
dataset:
|
|
name: AskUbuntu test
|
|
type: AskUbuntu-test
|
|
metrics:
|
|
- type: map
|
|
value: 0.5826205294809574
|
|
name: Map
|
|
- type: mrr@10
|
|
value: 0.7237319322514852
|
|
name: Mrr@10
|
|
- type: ndcg@10
|
|
value: 0.6303658219971641
|
|
name: Ndcg@10
|
|
---
|
|
|
|
# SentenceTransformer based on google-bert/bert-base-uncased
|
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [google-bert/bert-base-uncased](https://huggingface.co./google-bert/bert-base-uncased). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
|
|
|
## Model Details
|
|
|
|
### Model Description
|
|
- **Model Type:** Sentence Transformer
|
|
- **Base model:** [google-bert/bert-base-uncased](https://huggingface.co./google-bert/bert-base-uncased) <!-- at revision 86b5e0934494bd15c9632b12f734a8a67f723594 -->
|
|
- **Maximum Sequence Length:** 75 tokens
|
|
- **Output Dimensionality:** 768 dimensions
|
|
- **Similarity Function:** Cosine Similarity
|
|
<!-- - **Training Dataset:** Unknown -->
|
|
<!-- - **Language:** Unknown -->
|
|
<!-- - **License:** Unknown -->
|
|
|
|
### Model Sources
|
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co./models?library=sentence-transformers)
|
|
|
|
### Full Model Architecture
|
|
|
|
```
|
|
SentenceTransformer(
|
|
(0): Transformer({'max_seq_length': 75, 'do_lower_case': False}) with Transformer model: BertModel
|
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
|
)
|
|
```
|
|
|
|
## Usage
|
|
|
|
### Direct Usage (Sentence Transformers)
|
|
|
|
First install the Sentence Transformers library:
|
|
|
|
```bash
|
|
pip install -U sentence-transformers
|
|
```
|
|
|
|
Then you can load this model and run inference.
|
|
```python
|
|
from sentence_transformers import SentenceTransformer
|
|
|
|
# Download from the 🤗 Hub
|
|
model = SentenceTransformer("tomaarsen/bert-base-uncased-tsdae-askubuntu")
|
|
# Run inference
|
|
sentences = [
|
|
'how to fix ssl error from python apps ( urllib ) when behind https proxy ?',
|
|
'how to ssl from python () proxy',
|
|
'upstart',
|
|
]
|
|
embeddings = model.encode(sentences)
|
|
print(embeddings.shape)
|
|
# [3, 768]
|
|
|
|
# Get the similarity scores for the embeddings
|
|
similarities = model.similarity(embeddings, embeddings)
|
|
print(similarities.shape)
|
|
# [3, 3]
|
|
```
|
|
|
|
<!--
|
|
### Direct Usage (Transformers)
|
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary>
|
|
|
|
</details>
|
|
-->
|
|
|
|
<!--
|
|
### Downstream Usage (Sentence Transformers)
|
|
|
|
You can finetune this model on your own dataset.
|
|
|
|
<details><summary>Click to expand</summary>
|
|
|
|
</details>
|
|
-->
|
|
|
|
<!--
|
|
### Out-of-Scope Use
|
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
|
-->
|
|
|
|
## Evaluation
|
|
|
|
### Metrics
|
|
|
|
#### Reranking
|
|
|
|
* Datasets: `AskUbuntu-dev` and `AskUbuntu-test`
|
|
* Evaluated with [<code>RerankingEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.RerankingEvaluator)
|
|
|
|
| Metric | AskUbuntu-dev | AskUbuntu-test |
|
|
|:--------|:--------------|:---------------|
|
|
| **map** | **0.5058** | **0.5826** |
|
|
| mrr@10 | 0.6326 | 0.7237 |
|
|
| ndcg@10 | 0.5529 | 0.6304 |
|
|
|
|
<!--
|
|
## Bias, Risks and Limitations
|
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
|
-->
|
|
|
|
<!--
|
|
### Recommendations
|
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
|
-->
|
|
|
|
## Training Details
|
|
|
|
### Training Dataset
|
|
|
|
#### Unnamed Dataset
|
|
|
|
* Size: 160,436 training samples
|
|
* Columns: <code>text</code> and <code>noisy</code>
|
|
* Approximate statistics based on the first 1000 samples:
|
|
| | text | noisy |
|
|
|:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
|
|
| type | string | string |
|
|
| details | <ul><li>min: 5 tokens</li><li>mean: 14.43 tokens</li><li>max: 39 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 9.47 tokens</li><li>max: 24 tokens</li></ul> |
|
|
* Samples:
|
|
| text | noisy |
|
|
|:-------------------------------------------------------------------------------------------------|:-------------------------------------------------------------|
|
|
| <code>how to get the `` your battery is broken '' message to go away ?</code> | <code>to get the is broken go away?</code> |
|
|
| <code>how can i set the software center to install software for non-root users ?</code> | <code>how can i the center install non-root users</code> |
|
|
| <code>what are some alternatives to upgrading without using the standard upgrade system ?</code> | <code>what are alternatives to using standard system?</code> |
|
|
* Loss: [<code>DenoisingAutoEncoderLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#denoisingautoencoderloss)
|
|
|
|
### Training Hyperparameters
|
|
#### Non-Default Hyperparameters
|
|
|
|
- `eval_strategy`: steps
|
|
- `learning_rate`: 3e-05
|
|
- `num_train_epochs`: 1
|
|
- `warmup_ratio`: 0.1
|
|
- `fp16`: True
|
|
|
|
#### All Hyperparameters
|
|
<details><summary>Click to expand</summary>
|
|
|
|
- `overwrite_output_dir`: False
|
|
- `do_predict`: False
|
|
- `eval_strategy`: steps
|
|
- `prediction_loss_only`: True
|
|
- `per_device_train_batch_size`: 8
|
|
- `per_device_eval_batch_size`: 8
|
|
- `per_gpu_train_batch_size`: None
|
|
- `per_gpu_eval_batch_size`: None
|
|
- `gradient_accumulation_steps`: 1
|
|
- `eval_accumulation_steps`: None
|
|
- `torch_empty_cache_steps`: None
|
|
- `learning_rate`: 3e-05
|
|
- `weight_decay`: 0.0
|
|
- `adam_beta1`: 0.9
|
|
- `adam_beta2`: 0.999
|
|
- `adam_epsilon`: 1e-08
|
|
- `max_grad_norm`: 1.0
|
|
- `num_train_epochs`: 1
|
|
- `max_steps`: -1
|
|
- `lr_scheduler_type`: linear
|
|
- `lr_scheduler_kwargs`: {}
|
|
- `warmup_ratio`: 0.1
|
|
- `warmup_steps`: 0
|
|
- `log_level`: passive
|
|
- `log_level_replica`: warning
|
|
- `log_on_each_node`: True
|
|
- `logging_nan_inf_filter`: True
|
|
- `save_safetensors`: True
|
|
- `save_on_each_node`: False
|
|
- `save_only_model`: False
|
|
- `restore_callback_states_from_checkpoint`: False
|
|
- `no_cuda`: False
|
|
- `use_cpu`: False
|
|
- `use_mps_device`: False
|
|
- `seed`: 42
|
|
- `data_seed`: None
|
|
- `jit_mode_eval`: False
|
|
- `use_ipex`: False
|
|
- `bf16`: False
|
|
- `fp16`: True
|
|
- `fp16_opt_level`: O1
|
|
- `half_precision_backend`: auto
|
|
- `bf16_full_eval`: False
|
|
- `fp16_full_eval`: False
|
|
- `tf32`: None
|
|
- `local_rank`: 0
|
|
- `ddp_backend`: None
|
|
- `tpu_num_cores`: None
|
|
- `tpu_metrics_debug`: False
|
|
- `debug`: []
|
|
- `dataloader_drop_last`: False
|
|
- `dataloader_num_workers`: 0
|
|
- `dataloader_prefetch_factor`: None
|
|
- `past_index`: -1
|
|
- `disable_tqdm`: False
|
|
- `remove_unused_columns`: True
|
|
- `label_names`: None
|
|
- `load_best_model_at_end`: False
|
|
- `ignore_data_skip`: False
|
|
- `fsdp`: []
|
|
- `fsdp_min_num_params`: 0
|
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
|
- `fsdp_transformer_layer_cls_to_wrap`: None
|
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
|
- `deepspeed`: None
|
|
- `label_smoothing_factor`: 0.0
|
|
- `optim`: adamw_torch
|
|
- `optim_args`: None
|
|
- `adafactor`: False
|
|
- `group_by_length`: False
|
|
- `length_column_name`: length
|
|
- `ddp_find_unused_parameters`: None
|
|
- `ddp_bucket_cap_mb`: None
|
|
- `ddp_broadcast_buffers`: False
|
|
- `dataloader_pin_memory`: True
|
|
- `dataloader_persistent_workers`: False
|
|
- `skip_memory_metrics`: True
|
|
- `use_legacy_prediction_loop`: False
|
|
- `push_to_hub`: False
|
|
- `resume_from_checkpoint`: None
|
|
- `hub_model_id`: None
|
|
- `hub_strategy`: every_save
|
|
- `hub_private_repo`: None
|
|
- `hub_always_push`: False
|
|
- `gradient_checkpointing`: False
|
|
- `gradient_checkpointing_kwargs`: None
|
|
- `include_inputs_for_metrics`: False
|
|
- `include_for_metrics`: []
|
|
- `eval_do_concat_batches`: True
|
|
- `fp16_backend`: auto
|
|
- `push_to_hub_model_id`: None
|
|
- `push_to_hub_organization`: None
|
|
- `mp_parameters`:
|
|
- `auto_find_batch_size`: False
|
|
- `full_determinism`: False
|
|
- `torchdynamo`: None
|
|
- `ray_scope`: last
|
|
- `ddp_timeout`: 1800
|
|
- `torch_compile`: False
|
|
- `torch_compile_backend`: None
|
|
- `torch_compile_mode`: None
|
|
- `dispatch_batches`: None
|
|
- `split_batches`: None
|
|
- `include_tokens_per_second`: False
|
|
- `include_num_input_tokens_seen`: False
|
|
- `neftune_noise_alpha`: None
|
|
- `optim_target_modules`: None
|
|
- `batch_eval_metrics`: False
|
|
- `eval_on_start`: False
|
|
- `use_liger_kernel`: False
|
|
- `eval_use_gather_object`: False
|
|
- `average_tokens_across_devices`: False
|
|
- `prompts`: None
|
|
- `batch_sampler`: batch_sampler
|
|
- `multi_dataset_batch_sampler`: proportional
|
|
|
|
</details>
|
|
|
|
### Training Logs
|
|
| Epoch | Step | Training Loss | AskUbuntu-dev_map | AskUbuntu-test_map |
|
|
|:------:|:-----:|:-------------:|:-----------------:|:------------------:|
|
|
| -1 | -1 | - | 0.4151 | - |
|
|
| 0.0499 | 1000 | 6.1757 | - | - |
|
|
| 0.0997 | 2000 | 4.0925 | - | - |
|
|
| 0.1496 | 3000 | 3.2921 | - | - |
|
|
| 0.1995 | 4000 | 2.9046 | - | - |
|
|
| 0.2493 | 5000 | 2.669 | 0.5158 | - |
|
|
| 0.2992 | 6000 | 2.5884 | - | - |
|
|
| 0.3490 | 7000 | 2.437 | - | - |
|
|
| 0.3989 | 8000 | 2.3406 | - | - |
|
|
| 0.4488 | 9000 | 2.2709 | - | - |
|
|
| 0.4986 | 10000 | 2.1881 | 0.5131 | - |
|
|
| 0.5485 | 11000 | 2.1627 | - | - |
|
|
| 0.5984 | 12000 | 2.1055 | - | - |
|
|
| 0.6482 | 13000 | 2.0577 | - | - |
|
|
| 0.6981 | 14000 | 2.0133 | - | - |
|
|
| 0.7479 | 15000 | 1.9877 | 0.5130 | - |
|
|
| 0.7978 | 16000 | 1.9569 | - | - |
|
|
| 0.8477 | 17000 | 1.9219 | - | - |
|
|
| 0.8975 | 18000 | 1.9124 | - | - |
|
|
| 0.9474 | 19000 | 1.8676 | - | - |
|
|
| 0.9973 | 20000 | 1.8461 | 0.5058 | - |
|
|
| -1 | -1 | - | - | 0.5826 |
|
|
|
|
|
|
### Environmental Impact
|
|
Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
|
|
- **Energy Consumed**: 0.190 kWh
|
|
- **Carbon Emitted**: 0.074 kg of CO2
|
|
- **Hours Used**: 0.64 hours
|
|
|
|
### Training Hardware
|
|
- **On Cloud**: No
|
|
- **GPU Model**: 1 x NVIDIA GeForce RTX 3090
|
|
- **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K
|
|
- **RAM Size**: 31.78 GB
|
|
|
|
### Framework Versions
|
|
- Python: 3.11.6
|
|
- Sentence Transformers: 3.4.0.dev0
|
|
- Transformers: 4.48.0.dev0
|
|
- PyTorch: 2.5.0+cu121
|
|
- Accelerate: 0.35.0.dev0
|
|
- Datasets: 2.20.0
|
|
- Tokenizers: 0.21.0
|
|
|
|
## Citation
|
|
|
|
### BibTeX
|
|
|
|
#### Sentence Transformers
|
|
```bibtex
|
|
@inproceedings{reimers-2019-sentence-bert,
|
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
|
author = "Reimers, Nils and Gurevych, Iryna",
|
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
|
month = "11",
|
|
year = "2019",
|
|
publisher = "Association for Computational Linguistics",
|
|
url = "https://arxiv.org/abs/1908.10084",
|
|
}
|
|
```
|
|
|
|
#### DenoisingAutoEncoderLoss
|
|
```bibtex
|
|
@inproceedings{wang-2021-TSDAE,
|
|
title = "TSDAE: Using Transformer-based Sequential Denoising Auto-Encoderfor Unsupervised Sentence Embedding Learning",
|
|
author = "Wang, Kexin and Reimers, Nils and Gurevych, Iryna",
|
|
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2021",
|
|
month = nov,
|
|
year = "2021",
|
|
address = "Punta Cana, Dominican Republic",
|
|
publisher = "Association for Computational Linguistics",
|
|
pages = "671--688",
|
|
url = "https://arxiv.org/abs/2104.06979",
|
|
}
|
|
```
|
|
|
|
<!--
|
|
## Glossary
|
|
|
|
*Clearly define terms in order to be accessible across audiences.*
|
|
-->
|
|
|
|
<!--
|
|
## Model Card Authors
|
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
|
-->
|
|
|
|
<!--
|
|
## Model Card Contact
|
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
|
--> |