--- tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:160436 - loss:DenoisingAutoEncoderLoss base_model: google-bert/bert-base-uncased widget: - source_sentence: how do i make evolution check and notify new emails , without keeping main ui open ? sentences: - ppas be removed? - how set serve as a samba primary controller pam modules to authenticate against? - how do make check and notify new emails keeping - source_sentence: setting http proxy in awesome wm sentences: - on 10.04 on p series? - setting http proxy awesome wm - mean package is "set to installed? - source_sentence: what is ubuntu advantage ? sentences: - is advantage? - how turn calling on f1 - is utnubu? - source_sentence: is there a way to check hardware integrity ? sentences: - is there a way to hardware integrity? - to change key ctrl - software is to tv card - source_sentence: how to fix ssl error from python apps ( urllib ) when behind https proxy ? sentences: - windows started with archive - upstart - how to ssl from python () proxy pipeline_tag: sentence-similarity library_name: sentence-transformers metrics: - map - mrr@10 - ndcg@10 co2_eq_emissions: emissions: 74.02946721860093 energy_consumed: 0.19045301341027557 source: codecarbon training_type: fine-tuning on_cloud: false cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K ram_total_size: 31.777088165283203 hours_used: 0.64 hardware_used: 1 x NVIDIA GeForce RTX 3090 model-index: - name: SentenceTransformer based on google-bert/bert-base-uncased results: - task: type: reranking name: Reranking dataset: name: AskUbuntu dev type: AskUbuntu-dev metrics: - type: map value: 0.5058158414596666 name: Map - type: mrr@10 value: 0.6325571254142682 name: Mrr@10 - type: ndcg@10 value: 0.5529143206799554 name: Ndcg@10 - task: type: reranking name: Reranking dataset: name: AskUbuntu test type: AskUbuntu-test metrics: - type: map value: 0.5826205294809574 name: Map - type: mrr@10 value: 0.7237319322514852 name: Mrr@10 - type: ndcg@10 value: 0.6303658219971641 name: Ndcg@10 --- # SentenceTransformer based on google-bert/bert-base-uncased This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [google-bert/bert-base-uncased](https://huggingface.co./google-bert/bert-base-uncased). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [google-bert/bert-base-uncased](https://huggingface.co./google-bert/bert-base-uncased) - **Maximum Sequence Length:** 75 tokens - **Output Dimensionality:** 768 dimensions - **Similarity Function:** Cosine Similarity ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co./models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 75, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("tomaarsen/bert-base-uncased-tsdae-askubuntu") # Run inference sentences = [ 'how to fix ssl error from python apps ( urllib ) when behind https proxy ?', 'how to ssl from python () proxy', 'upstart', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Evaluation ### Metrics #### Reranking * Datasets: `AskUbuntu-dev` and `AskUbuntu-test` * Evaluated with [RerankingEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.RerankingEvaluator) | Metric | AskUbuntu-dev | AskUbuntu-test | |:--------|:--------------|:---------------| | **map** | **0.5058** | **0.5826** | | mrr@10 | 0.6326 | 0.7237 | | ndcg@10 | 0.5529 | 0.6304 | ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 160,436 training samples * Columns: text and noisy * Approximate statistics based on the first 1000 samples: | | text | noisy | |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------| | type | string | string | | details | | | * Samples: | text | noisy | |:-------------------------------------------------------------------------------------------------|:-------------------------------------------------------------| | how to get the `` your battery is broken '' message to go away ? | to get the is broken go away? | | how can i set the software center to install software for non-root users ? | how can i the center install non-root users | | what are some alternatives to upgrading without using the standard upgrade system ? | what are alternatives to using standard system? | * Loss: [DenoisingAutoEncoderLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#denoisingautoencoderloss) ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `learning_rate`: 3e-05 - `num_train_epochs`: 1 - `warmup_ratio`: 0.1 - `fp16`: True #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 8 - `per_device_eval_batch_size`: 8 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 3e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 1 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: True - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: proportional
### Training Logs | Epoch | Step | Training Loss | AskUbuntu-dev_map | AskUbuntu-test_map | |:------:|:-----:|:-------------:|:-----------------:|:------------------:| | -1 | -1 | - | 0.4151 | - | | 0.0499 | 1000 | 6.1757 | - | - | | 0.0997 | 2000 | 4.0925 | - | - | | 0.1496 | 3000 | 3.2921 | - | - | | 0.1995 | 4000 | 2.9046 | - | - | | 0.2493 | 5000 | 2.669 | 0.5158 | - | | 0.2992 | 6000 | 2.5884 | - | - | | 0.3490 | 7000 | 2.437 | - | - | | 0.3989 | 8000 | 2.3406 | - | - | | 0.4488 | 9000 | 2.2709 | - | - | | 0.4986 | 10000 | 2.1881 | 0.5131 | - | | 0.5485 | 11000 | 2.1627 | - | - | | 0.5984 | 12000 | 2.1055 | - | - | | 0.6482 | 13000 | 2.0577 | - | - | | 0.6981 | 14000 | 2.0133 | - | - | | 0.7479 | 15000 | 1.9877 | 0.5130 | - | | 0.7978 | 16000 | 1.9569 | - | - | | 0.8477 | 17000 | 1.9219 | - | - | | 0.8975 | 18000 | 1.9124 | - | - | | 0.9474 | 19000 | 1.8676 | - | - | | 0.9973 | 20000 | 1.8461 | 0.5058 | - | | -1 | -1 | - | - | 0.5826 | ### Environmental Impact Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon). - **Energy Consumed**: 0.190 kWh - **Carbon Emitted**: 0.074 kg of CO2 - **Hours Used**: 0.64 hours ### Training Hardware - **On Cloud**: No - **GPU Model**: 1 x NVIDIA GeForce RTX 3090 - **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K - **RAM Size**: 31.78 GB ### Framework Versions - Python: 3.11.6 - Sentence Transformers: 3.4.0.dev0 - Transformers: 4.48.0.dev0 - PyTorch: 2.5.0+cu121 - Accelerate: 0.35.0.dev0 - Datasets: 2.20.0 - Tokenizers: 0.21.0 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### DenoisingAutoEncoderLoss ```bibtex @inproceedings{wang-2021-TSDAE, title = "TSDAE: Using Transformer-based Sequential Denoising Auto-Encoderfor Unsupervised Sentence Embedding Learning", author = "Wang, Kexin and Reimers, Nils and Gurevych, Iryna", booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2021", month = nov, year = "2021", address = "Punta Cana, Dominican Republic", publisher = "Association for Computational Linguistics", pages = "671--688", url = "https://arxiv.org/abs/2104.06979", } ```