metadata
library_name: setfit
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
metrics:
- accuracy
- f1
- precision
- recall
widget:
- text: >-
it's not enough that product is integrating brand in product search
results but is also looking to add it to product, word and outlook. this
could be transformative for productivity at work in the future if it
works! product could be under siege soon!
- text: >-
Copilot in Windows 11 is a game changer!! Here is a list of things it can
do: It can answer your questions in natural language. It can summarize
content to give you a brief overview It can adjust your PCs settings It
can help troubleshoot issues. 1/2
- text: >-
1/2 Hello Clif! He didn't want to use ChatGPT, its data or openai. Hes
using the French LLM Mistral and currently training it on his own data
articles/books he personally published, and hes been requesting book
publishers permission to use their books
- text: >-
Protecting data in the era of generative AI: Nightfall AI launches
innovative security platform dlvr.it/StD9vP
- text: >-
All I want from my Mac is GODDAM DROPDOWN MENUS Please stop with the
icons. Im talking to you, Apple, and PARTICULARLY to you, Microsoft Word.
Death to thy ribbon, and be damned
pipeline_tag: text-classification
inference: true
base_model: BAAI/bge-base-en-v1.5
model-index:
- name: SetFit with BAAI/bge-base-en-v1.5
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 0.7915057915057915
name: Accuracy
- type: f1
value:
- 0.3720930232558139
- 0.4615384615384615
- 0.8747044917257684
name: F1
- type: precision
value:
- 0.23529411764705882
- 0.3076923076923077
- 0.9946236559139785
name: Precision
- type: recall
value:
- 0.8888888888888888
- 0.9230769230769231
- 0.7805907172995781
name: Recall
SetFit with BAAI/bge-base-en-v1.5
This is a SetFit model that can be used for Text Classification. This SetFit model uses BAAI/bge-base-en-v1.5 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: BAAI/bge-base-en-v1.5
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 512 tokens
- Number of Classes: 3 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
neither |
|
peak |
|
pit |
|
Evaluation
Metrics
Label | Accuracy | F1 | Precision | Recall |
---|---|---|---|---|
all | 0.7915 | [0.3720930232558139, 0.4615384615384615, 0.8747044917257684] | [0.23529411764705882, 0.3076923076923077, 0.9946236559139785] | [0.8888888888888888, 0.9230769230769231, 0.7805907172995781] |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("tjmooney98/725_tm-setfit-bge-base-en-v1.5")
# Run inference
preds = model("Protecting data in the era of generative AI: Nightfall AI launches innovative security platform dlvr.it/StD9vP")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 9 | 37.1711 | 98 |
Label | Training Sample Count |
---|---|
pit | 150 |
peak | 150 |
neither | 150 |
Training Hyperparameters
- batch_size: (32, 32)
- num_epochs: (1, 1)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0002 | 1 | 0.2384 | - |
0.0119 | 50 | 0.2399 | - |
0.0237 | 100 | 0.2136 | - |
0.0356 | 150 | 0.1323 | - |
0.0474 | 200 | 0.0703 | - |
0.0593 | 250 | 0.01 | - |
0.0711 | 300 | 0.0063 | - |
0.0830 | 350 | 0.0028 | - |
0.0948 | 400 | 0.0026 | - |
0.1067 | 450 | 0.0021 | - |
0.1185 | 500 | 0.0018 | - |
0.1304 | 550 | 0.0016 | - |
0.1422 | 600 | 0.0014 | - |
0.1541 | 650 | 0.0015 | - |
0.1659 | 700 | 0.0013 | - |
0.1778 | 750 | 0.0012 | - |
0.1896 | 800 | 0.0012 | - |
0.2015 | 850 | 0.0012 | - |
0.2133 | 900 | 0.0011 | - |
0.2252 | 950 | 0.0011 | - |
0.2370 | 1000 | 0.0009 | - |
0.2489 | 1050 | 0.001 | - |
0.2607 | 1100 | 0.0009 | - |
0.2726 | 1150 | 0.0008 | - |
0.2844 | 1200 | 0.0008 | - |
0.2963 | 1250 | 0.0009 | - |
0.3081 | 1300 | 0.0008 | - |
0.3200 | 1350 | 0.0007 | - |
0.3318 | 1400 | 0.0007 | - |
0.3437 | 1450 | 0.0007 | - |
0.3555 | 1500 | 0.0006 | - |
0.3674 | 1550 | 0.0007 | - |
0.3792 | 1600 | 0.0007 | - |
0.3911 | 1650 | 0.0008 | - |
0.4029 | 1700 | 0.0006 | - |
0.4148 | 1750 | 0.0006 | - |
0.4266 | 1800 | 0.0006 | - |
0.4385 | 1850 | 0.0006 | - |
0.4503 | 1900 | 0.0006 | - |
0.4622 | 1950 | 0.0006 | - |
0.4740 | 2000 | 0.0006 | - |
0.4859 | 2050 | 0.0005 | - |
0.4977 | 2100 | 0.0006 | - |
0.5096 | 2150 | 0.0006 | - |
0.5215 | 2200 | 0.0005 | - |
0.5333 | 2250 | 0.0005 | - |
0.5452 | 2300 | 0.0005 | - |
0.5570 | 2350 | 0.0006 | - |
0.5689 | 2400 | 0.0005 | - |
0.5807 | 2450 | 0.0005 | - |
0.5926 | 2500 | 0.0006 | - |
0.6044 | 2550 | 0.0006 | - |
0.6163 | 2600 | 0.0005 | - |
0.6281 | 2650 | 0.0005 | - |
0.6400 | 2700 | 0.0005 | - |
0.6518 | 2750 | 0.0005 | - |
0.6637 | 2800 | 0.0005 | - |
0.6755 | 2850 | 0.0005 | - |
0.6874 | 2900 | 0.0005 | - |
0.6992 | 2950 | 0.0004 | - |
0.7111 | 3000 | 0.0004 | - |
0.7229 | 3050 | 0.0004 | - |
0.7348 | 3100 | 0.0005 | - |
0.7466 | 3150 | 0.0005 | - |
0.7585 | 3200 | 0.0005 | - |
0.7703 | 3250 | 0.0004 | - |
0.7822 | 3300 | 0.0004 | - |
0.7940 | 3350 | 0.0004 | - |
0.8059 | 3400 | 0.0004 | - |
0.8177 | 3450 | 0.0004 | - |
0.8296 | 3500 | 0.0004 | - |
0.8414 | 3550 | 0.0004 | - |
0.8533 | 3600 | 0.0004 | - |
0.8651 | 3650 | 0.0004 | - |
0.8770 | 3700 | 0.0004 | - |
0.8888 | 3750 | 0.0004 | - |
0.9007 | 3800 | 0.0004 | - |
0.9125 | 3850 | 0.0004 | - |
0.9244 | 3900 | 0.0005 | - |
0.9362 | 3950 | 0.0004 | - |
0.9481 | 4000 | 0.0004 | - |
0.9599 | 4050 | 0.0004 | - |
0.9718 | 4100 | 0.0004 | - |
0.9836 | 4150 | 0.0004 | - |
0.9955 | 4200 | 0.0004 | - |
Framework Versions
- Python: 3.10.12
- SetFit: 1.0.3
- Sentence Transformers: 2.5.1
- Transformers: 4.38.1
- PyTorch: 2.1.0+cu121
- Datasets: 2.18.0
- Tokenizers: 0.15.2
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}